The projects VALIASI (VALidation of IASI level 2 products, supported by EUMETSAT) and NOVIA (towards a Near Operational Validation of IASI level 2 trace gas products, supported by Spanish Government) will validate the IASI operational atmospheric trace gas products (Level 2): H_2O and O_3 profiles as well as total column amounts of H_2O, O_3, CH_4, N_2O, CO_2 and CO. For this purpose trace gas data measured by the ground-based FTS (Fourier Transform Spectrometer) technique are used as reference.

REFERENCES

VALIDATION OF IASI OZONE TOTAL COLUMN (OTC) AT IZO: One example within VALIASI

Validation Strategy

Temporal Criterium: ±1h

So restrictive due to occasionally significant diurnal OTC variations

Spatial Criterium: ±1° around IZO

No significant influence of spatial coincidencia criterium

FTS Sites

- FTS OTCs are retrieved with the algorithm PROFFT [Hase et al., 2004] from solar absorption spectra between 1000-1005 cm$^{-1}$. FTS detects four independent ozone partial columns (DOFS~4).
- OTC integrated from ~770 (2.37 km) to 0.005 hPa, with a theoretical precision of <1% [Schneider and Hase, 2008; García et al., 2012]. The ozone partial column between sea level and 2.37 km is 8±2 DU from Electro Chemical Cell sonde climatology (1999-2010) at Tenerife.

Day-to-Day Intercomparison

Monthly Intercomparison

- FTS is a powerful tool to validate IASI L2 products: high precision, high measurement frequency and good vertical resolution.
- For OTC IASI-FTS intercomparison:
 1) Significant improvement for IASI_L2 OTC v5: IASI underestimates by about 2±4% the FTS OTC.
 2) Good consistency of the OTC annual cycle and the intra-month OTC variability (largest discrepancies in spring): IASI_L2 misses ozone tropospheric contribution.

FTS

- FTS OTCs are retrieved with the algorithm PROFFT [Hase et al., 2004] from solar absorption spectra between 1000-1005 cm$^{-1}$. FTS detects four independent ozone partial columns (DOFS~4).
- OTC integrated from ~770 (2.37 km) to 0.005 hPa, with a theoretical precision of <1% [Schneider and Hase, 2008; García et al., 2012]. The ozone partial column between sea level and 2.37 km is 8±2 DU from Electro Chemical Cell sonde climatology (1999-2010) at Tenerife.

Acknowledgements

Since 1999 the Izaña FTS activities have been supported by different funding agencies: European Commission, European Space Agency, European Research Council, Deutsche Forschungsgemeinschaft, Deutsches Zentrum für Luft- und Raumfahrt, and the Ministries de Ciencia e Innovacion and Education from Spain. Furthermore, the research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº284421 and nº296911. E. Sepúlveda enjoys a pre-doctoral fellowship from the Ministerio de Educación from Spain.