The best skies for Astronomy

CASIANA MUÑOZ-TUÑÓN
&
ANTONIA M. VARELA, JULIO CASTRO ALMAZÁN

(SKYTEAM@IAC.ES)

Jean Vernin,
Jesus J. Fuensalida
Begoña García-Lorenzo
and many others
Cielos despejados, transparentes, nítidos y oscuros
Parameters for Site Characterization

- Sky transparency: Atmospheric extinction
- Cloudiness (useful time)
- Sky brightness
- Ground base meteorology:
  - Long-term meteorological parameters
  - Climate variations
- Seeing:
  - Structure of the Atmospheric Turbulence
- Precipitable Water Vapour (PWV)
- Ground wind speed and direction, vertical profile in the BL
- Sodium layer density and height
- Airborne aerosols and dust.
CLEAR SKY

No clouds and High Transparency-Low Extinction
Useful time and extinction

The Carlsberg Meridian Telescope at the ORM since 1984 ([http://www.ast.cam.ac.uk](http://www.ast.cam.ac.uk)) providing nightly values of atmospheric extinction coefficient in V and r’ Sloan filters

\[ K_v \text{ monthly median} \]

\[ K_v \text{ yearly median fit}=0.13 \]


AEMET Noviembre 2016
Average weather downtime: 23% (from a sample of 21 years)
18 yr WHT logs 26.33%
García-Gil, Muñoz-Tuñón & Varela, PASP, 122, 1109 (2010)- 20 yr database baseline
Canarian Observatories (OT&ORM)
Astronomical reserves protected by law.
The Sky Quality Protection Technical Office (OTPC) was set up by the IAC in January 1992 to provide advice on the application of the Sky Law (Law 31/1988), [http://www.iac.es/otpc](http://www.iac.es/otpc)
Sky brightness using Photomultipliers tubes (185-830 nm) @ ORM&OT for six different elevations// protocol to detect and control contaminating sources. (see more at http://www.iac.es/site-testing/ and www.iac.es/OTPC)


ASTMOSCOPES- the new devices for measurements.

AEMET Noviembre 2016
Cosmic Epochs

- Big Bang
- Radiation era
- ~300,000 years: "Dark ages" begin
- ~400 million years: Stars and nascent galaxies form
- ~1 billion years: Dark ages end
- ~9.2 billion years: Sun, Earth, and solar system have formed
- ~13.7 billion years: Present

Galaxy A1689-zD1: ~700 million years after the Big Bang
Necesitamos... grandes espejos, imágenes nítidas, que se pueden mejorar... (AO)

<table>
<thead>
<tr>
<th>Instrument/Layer</th>
<th>D(Dome)</th>
<th>SL(Surface Layer)</th>
<th>BL(Bound. Layer)</th>
<th>FA(Free Atmos.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scidar</td>
<td>nothing</td>
<td></td>
<td></td>
<td>$C_N^2(h,t)$profile</td>
</tr>
<tr>
<td>Scidar SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballon</td>
<td>nothing</td>
<td>less reliable profile</td>
<td>profile from 50 m to 20 km</td>
<td></td>
</tr>
<tr>
<td>Mast</td>
<td>nothing</td>
<td>$C_T^2$ profile</td>
<td></td>
<td>nothing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turbulence</th>
<th>SL</th>
<th>BL</th>
<th>FA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int C_N^2(h)dh 10^{-13}$</td>
<td>0.11</td>
<td>2.10±0.6</td>
<td>1.53</td>
<td>3.74</td>
</tr>
<tr>
<td>$\varepsilon_{fwhm}$ (arcsec)</td>
<td>0.08</td>
<td>0.50±0.2</td>
<td>0.40</td>
<td>0.69</td>
</tr>
<tr>
<td>%</td>
<td>3</td>
<td>56</td>
<td>41</td>
<td>100</td>
</tr>
</tbody>
</table>

**Instrument**
- Mast
- Balloons
- Scidar
Differential Image Motion Monitors

(accurate, absolute and reproducible data)


Used by, GTC, TNG, O. Sierra Nevada, Calar Alto, ING, INAOE (la Negra, Cananea), UNAM(Spedro M)...

Used in the FP6 site selection WP

Tower designed by the Galileo team
Integrated seeing ($\varepsilon$) statistics


<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>mean</strong></td>
<td><strong>0.76”</strong></td>
</tr>
<tr>
<td><strong>median</strong></td>
<td><strong>0.64”</strong> (0.54” in summer)</td>
</tr>
<tr>
<td><strong>std</strong></td>
<td><strong>0.17”</strong></td>
</tr>
<tr>
<td><strong>&lt; 0.3”</strong></td>
<td><strong>7%</strong></td>
</tr>
</tbody>
</table>

On-line seeing data available
@ORM [www.iac.es/site-testing/DIMMA_ORM](http://www.iac.es/site-testing/DIMMA_ORM)
@OT [www.iac.es/site-testing/DIMMA_OT](http://www.iac.es/site-testing/DIMMA_OT)
Integrated seeing ($\varepsilon$) - measured since 1995


Squares: median values; Diamonds: mean values; Error bars STD of the mean.

Upper plot, Ndata for every month every year (color code)
Seasonal trend - seeing ($\varepsilon$)


Behaviour coincident with the annual variation of the scale height and frequency of the inversion layer (Font-Tullot, 1956)
Competition for hosting the E-ELT
Cumulative frequency of $\varepsilon$ //E-ELT FP6 EECC (2008/2009)

AEMET Noviembre 2016

Vernin & EELT team, PASP, 2011
DIMM @ OT & ORM


AEMET Noviembre 2016
Seeing at Teide Observatory

Night Time (DIMM)∗
2395m - 28N18'44.31" - 16W30'41.61" (~30 m North-Eastwards of the ESA-OGS)

Last data point: 2013-09-19 05:55 UT
Last web update: 2013-09-19 15:35 UT

n.a.  n.a.  0.39  0.41  0.10  0.95  0.17
Median  Median AD

0.39  0.41  0.10  0.95  0.17
Median  Mean  Med.AD  Max  Min

Current Night

TEIDE OBSERVATORY (OT)

Sep 18, 2013  Sep 19, 2013

Seeing (arcsec)

19:45  20:45  21:45  22:45  23:45  0:45  1:45  2:45  3:45  4:45
The gamma rays produce particle showers in the atmosphere. The charged particles can be detected by Cherenkov Telescopes.
CTA: Un esfuerzo a nivel mundial
cobertura de todo el cielo: dos observatorios

Red de baja energía: 4 telescopios grandes
y 15 medianos

Ciencia extragaláctica

Observatorio Norte

Principalmente
Ciencia galáctica

Observatorio Sur

Todo el rango de energías: 4 telescopios grandes, 25 medianos y 70 pequeños

- 5 continentes
- 32 países
- 91 grupos
- 200 institutos
- 1270 miembros
The technique works so we want bigger and better! **Cherenkov Telescope Array (CTA)**

**Northern site:**
Observatorio del Roque de los Muchachos (ORM/IAC), La Palma (Spain)

**Southern site:**
European Southern Observatory (ESO), Paranal (Chile)
Large Size Telescopes (LST)

23 m diameter

Carbon fibre structure (fast-repointing)
1.5 m glass-on-aluminum honeycomb mirror facets
Active mirror alignment using cameras on each facet
Pointing in 20 s to any sky position

Lowest energies (< 200 GeV)
Transient phenomena: Active Galatic Nuclei, Gamma-Ray Bursts, pulsars, Dark Matter,
Prototipo de los telescopios de 12 m
Distribución de los telescopios ORM- La Palma
METEO data

AEMET Noviembre 2016
2002-2012 Izaña Meteo Report

Julio A. Castro-Almazán and Casiana Muñoz-Tuñón
Instituto de Astrofísica de Canarias (IAC)

Publishing and/or distribution without authorization is forbidden

October 24, 2014
ACKNOWLEDGMENTS

This report made use of 10 years data recorded by the Spanish Agencia Estatal de Meteorología (AEMet) at the Izana Atmospheric Research Center (CIAI) and by the Global Oscillation Network Group (GONG) at Teide Observatory (OT). Additionally, some wind data from the Cherenkov Telescope Array (CTA) atmosphere station at Tenerife was also used for comparison.

We are grateful to all of them for the kindly distribution of their data. We particularly thank Ricardo Sanz from the AEMet Delegation in Santa Cruz de Tenerife, Pere Lluís Pallé from GONG, Diego Sierra from the IAC Network department and Irene Puerto and Ramón García López from the CTA team at IAC.
The Thirty-Meter-Telescope

Christophe Dumas
TMT International Observatory
TMT in a nutshell

- Wide-field, Alt-Az Ritchey-Chretien telescope
- 30 meter diameter primary mirror (**492 hexagonal segments**, 1.44m across corners)
- Active secondary mirror (not adaptive)
- Flat tertiary mirror beam light to Nasmyth focus
- **Up to 8 instruments**, over 2 Nasmyth platforms, to cover visible to infrared wavelengths
- **First-light AO system** (NFIRAOS):
  - Laser Guide Star Facility (LGSF) Multi-Conjugate-AO (MCAO)
  - Diffraction-limit at J, H, and K bands, can feed 3 instruments.
TMT Science

- Fundamental physics & cosmology
- Early Universe & galaxy formation
- Super massive black-holes
- Nearby-galaxies & Milky-way
- Star formation & exoplanets
- Time-domain science
- Solar-system
Mauna Kea & TMT

- July 2009: TMT Board of Directors select Mauna Kea as the preferred site for the Thirty-Meter Telescope
  - Mauna Kea is a superb astronomy site
  - Northern hemisphere / Center of ‘Pacific rim’
  - Synergy with existing partner observatories

- May 2015: Start the TMT construction phase
  - Sill, while offsite construction/development activities are proceeding well, according to plan...
  - ... the onsite construction was interrupted by demonstrations and Hawaii Supreme Court mandating rehearing of construction permit (Dec. 2015)
TMT site (re-)selection timeline

- TMT is planning to resume construction early 2018

  - This means:
    - Selection of an alternate site (announcement expected October 30th)
    - Selection of final site before September 2017
    - Start of construction on selected site in April 2018

- Construction will take ~8 years and start of operations soon after

- No descope wrt original project design (i.e. full primary mirror and AO/LGS at first-light)
Current timeline

- April 2018: Start of Construction
- End 2019: Start erection of enclosure base
- 2020-2022: Enclosure shell
  - End 2023: End construction of summit buildings
- 2022-2024: Telescope structure integration
- 2024-2026: AIV

- “First-light”: End 2026/early 2017
  - Commissioning and start of operations soon after
Summary of the site testing results at the Roque de los Muchachos Observatory

Sky Quality Team*
www.iac.es/site-testing
Instituto de Astrofisica de Canarias, E-38200, La Laguna, Spain
Send correspondence to skyteam@iac.es
March-2016

Abstract

The characterization of the atmosphere for astronomical observations is a key project for the IAC. From nearly 30 years of systematic work including routine and intensive campaigns, a wide set of parameters characterizing the Canarian sites have been gathered. In this document we make a summary of them with a particular emphasis to those relevant for the Adaptive Optics at the ORM. The main result are: the seeing, isoplanatic angle, coherence time median values are 0.65'' ± 0.5, 2.74'' ± 1.2 and > 5 ms, respectively. The vertical distribution of the turbulence shows an important concentration of ≈ 65% in the Boundary Layer. The results are supported by different techniques and measurements, including the more than 190.000 vertical profiles obtained at the ORM using a SCIDAR at the Jacobus Kapteyn Telescope. The ORM is an excellent site not only because of its atmospheric quality but also by the actions that have been adopted to protect and continuously characterize it.

Contents

1 General background .................................................. 2
   1.1 Proposed Locations ........................................... 3

2 Parameters for Adaptive Optics (AO) .................. 4
   2.1 Seeing (ε) and coherence radius (r0) ......... 4
   2.2 Boundary Layer (BL) and Free Atmosphere (FA) seeing .... 4
   2.3 Nightly stability ........................................ 6
   2.4 Coherence time (τ0) and isoplanatic angle (θ0) .... 6
   2.5 C2ν turbulence vertical distribution .......... 8

3 Meteorology and climate .................................... 10
   3.1 Ground Temperature .................................. 10
   3.2 Ground wind ........................................ 10
   3.3 Extreme weather conditions .................... 11
   3.4 Vertical wind distribution ...................... 12
SKY parameters for AO

\[ r_0 = 0.185 \lambda^{6/5} \left( \int_0^\infty C_N^2(h) dh \right)^{-3/5}. \]  \hspace{1cm} (1)

\[ \varepsilon_{fwhm} = 0.98 \frac{\lambda}{r_0} = 5.25 \lambda^{-1/5} \left( \int_0^\infty C_N^2(h) dh \right)^{3/5}. \]  \hspace{1cm} (2)

\[ \theta_0 = 0.058 \lambda^{6/5} \left( \int_0^\infty h^{5/3} C_N^2(h) dh \right)^{-3/5}. \]  \hspace{1cm} (3)

\[ \tau_0 = 0.058 \lambda^{6/5} \left( \int_0^\infty |V(h)|^{5/3} C_N^2(h) dh \right)^{-3/5}. \]  \hspace{1cm} (4)
### Seeing ($\varepsilon$) and coherence radius ($r_0$)

<table>
<thead>
<tr>
<th>Site Instrument</th>
<th>ORM</th>
<th>Armaz.</th>
<th>MKEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiosonde</td>
<td>1990</td>
<td>2004-2009</td>
<td></td>
</tr>
<tr>
<td>DIMM</td>
<td>1995-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-SCIDAR</td>
<td>2004-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIMM*</td>
<td>2008-2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>6 balloons</td>
<td>TNG site</td>
<td>E-ELT campaign</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>GTC site</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>routine runs</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>routine runs</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td>campaign</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refs.</th>
<th>$\varepsilon''$</th>
<th>$\sigma$</th>
<th>$r_0$ (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$med$</td>
<td>$med$</td>
<td></td>
</tr>
<tr>
<td>$\varepsilon''$</td>
<td>0.70</td>
<td>0.64</td>
<td>0.65</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>0.49</td>
<td>0.47</td>
<td>0.40</td>
</tr>
<tr>
<td>$r_0$ (cm)</td>
<td>15.9</td>
<td>17.3</td>
<td>17.1</td>
</tr>
</tbody>
</table>

The **seeing** values at the ORM ranges from 0.63'' to 0.72'' (25th perc. = 0.53''). These values, well below 1'', assure the optimal conditions for High Resolution and AO in particular.

The results, obtained with different techniques and periods, are all in very good agreement with differences below one tenth.

The $\varepsilon$ distribution corresponding to **summer** (Jun–Sep) gives better mean and median values and smaller $\sigma$. The minimum values are also recorded in summer (the best seeing measured is 0.17'') and $\varepsilon < 0.3$'' the 7% of the time.
### Boundary Layer (BL) and Free Atmosphere (FA) seeing

<table>
<thead>
<tr>
<th>Site Instrument</th>
<th>ORM</th>
<th>G-SCIDAR</th>
<th>Armaz.</th>
<th>MKEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>E-ELT campaign</td>
<td>routine runs</td>
<td>TMT campaign</td>
<td></td>
</tr>
<tr>
<td>Refs.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>ε (&quot;)</td>
<td>med</td>
<td>0.70</td>
<td>0.72</td>
<td>0.63</td>
</tr>
<tr>
<td>ε_{FA} (&quot;)</td>
<td>med</td>
<td>0.41</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>σ</td>
<td>—</td>
<td>0.16</td>
<td>0.38</td>
<td>0.22</td>
</tr>
<tr>
<td>ε_{BL} (&quot;)</td>
<td>med</td>
<td>0.56</td>
<td>0.58</td>
<td>0.41</td>
</tr>
<tr>
<td>σ</td>
<td>—</td>
<td>0.43</td>
<td>0.38</td>
<td>0.35</td>
</tr>
<tr>
<td>BL contribution to ε (%)</td>
<td>69.0</td>
<td>70.0</td>
<td>63.6</td>
<td>36.6</td>
</tr>
</tbody>
</table>

The contribution of the BL to the total seeing at ORM is 64% – 70%. This ratio (higher than measured at other very good sites) improves the potential for compensation with Multiconjugated AO (MCAO).
Coherence time ($\tau_0$) and isoplanatic angle ($\theta_0$)

<table>
<thead>
<tr>
<th>Site Instrument</th>
<th>ORM</th>
<th>Armaz.</th>
<th>MKEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>6 balloons</td>
<td>E-ELT campaign</td>
<td>routine runs</td>
</tr>
<tr>
<td>Refs.</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\theta_0$ (&quot;)</th>
<th>median</th>
<th>1.42</th>
<th>1.93</th>
<th>2.74</th>
<th>2.04</th>
<th>2.69</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma$</td>
<td>0.32</td>
<td>0.77</td>
<td>1.19</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\tau_0$ (ms)</td>
<td>median</td>
<td>6.28</td>
<td>5.58</td>
<td>5.37</td>
<td>4.62</td>
<td>5.14</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>2.14</td>
<td>4.14</td>
<td>2.23</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

The isoplanatic angle ($\theta_0$) obtained at ORM after 6 years of routine operations of G-SCIDAR is $2.74" \pm 1.2$.

The results obtained for $\tau_0$ at ORM show median values always over 5 ms for the different campaigns. This large $\tau_0$ reduces the bandwidth requirements for the AO closed loop control and increases the sensibility of the WFS micro-lenses that allows for using less bright guide stars.
It is based on the original **Generalized-SCIDAR**, to be used systematically. Designed for the EELT-FP6 EECC grant (2000-2005). UNIV NIZA+IAC.
**Fig. 3.** Evolution of the turbulence profiles for 26th May 2006, showing the lag in the time in the turbulence structure turbulence above both observatories (fig. 3.a is OT, fig. 3.b is ORM).
$C_N^2$ turbulence vertical distribution

January

February

March

April

May

June

July

August

September

October

November

December

Altitude (km)

$C_N^2$ (m/s^2)

Observatory Level
The monthly turbulence distribution shows the **predominance of the BL** (GL in Fig. 8). Other layer in importance is at 5 km.

A complete database of **197,035** $C_N^2(h)$ and $|V(h)|$ profiles from **211 nights (2004–2009)** is available for AO simulations at ORM. At OT, there are **93,662 profiles from 153 nights (2002–2009)**.
Press Release

STATEMENT REGARDING SELECTION OF ALTERNATE SITE FOR TMT

10.30.2016

The TMT International Observatory Board of Governors met last week to discuss the progress of TMT in Hawaii and to consider potential alternate sites. To follow is a statement from Henry Yang, Chair of the TMT International Observatory Board:

"The TMT International Observatory (TIO) Board of Governors has explored a number of alternative sites for TMT. Every site we considered would enable TMT's core science programs."

"After careful deliberation, the Board of Governors has identified Observatorio del Roque de los Muchachos (ORM) on La Palma in the Canary Islands, Spain as the primary alternative to Hawaii."

"Maunakea continues to be the preferred choice for the location of the Thirty Meter Telescope, and the TIO Board will continue intensive efforts to gain approval for TMT in Hawaii. TIO is very grateful to all of our supporters and friends throughout Hawaii, and we deeply appreciate their continued support."
THANKS