International Journal of Biometeorology

, Volume 55, Issue 1, pp 67–85 | Cite as

Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands)

  • Rebeca Izquierdo
  • Jordina Belmonte
  • Anna Avila
  • Marta Alarcón
  • Emilio Cuevas
  • Silvia Alonso-Pérez
Original Paper


The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source–receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees (Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs (Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89–97% of annual counts of the highly allergenous Olea originates from extra-regional sources in southern Iberia and northern Africa.


Pollen Aerobiology Back trajectory Source receptor model Long range transport Allergy 



This research received financial support from the Spanish government through the projects CGL2005-07543, CGL2009-11205, CGL2009-13188-01 and the “Subprograma MICINN-PTA” funded by the European Social Fund (ESF). We also thank the contribution of CONSOLIDER-Ingenio 2010 projects “Multidisciplinary Research Consortium on Gradual and Abrupt Climate Changes, and their Impacts on the Environment” (GRACCIE)” and CSD2008-00040 “Los montes españoles y el cambio global: amenazas y oportunidades (MONTES)”. Also, the “COST Action ES0603: EUPOL Assessment of production, release, distribution and health impact or allergenic pollen in Europe” and “Proyecto EOLO-PAT (Predicción Aerobiológica para Tenerife), which is a joint project between Laboratori d'Anàlisis Palinològiques, Centro de Investigación Atmosférica de Izaña (CIAI) and Air Liquide España S.A. The authors also gratefully acknowledge the colaboration of Sergio Afonso (responsible for collection samples in IZO y SCO) and Rut Puigdemunt (responsible for pollen analysis in SCO). Finally, we thank the NASA for satellite images acquired by SeaWiFS (Sea-viewing Wide Field of view Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer).


  1. Alonso-Pérez S, Cuevas E, Querol X, Viana M, Guerra JC (2007) Impact of the Saharan dust outbreaks on the ambient levels of total suspended particles (TSP) in the marine boundary layer (MBL) of the subtropical eastern North Atlantic ocean. Atmos Environ 41:9468. doi: 10.1016/j.atmosenv.2007.08.049 CrossRefGoogle Scholar
  2. Apadula F, Gotti A, Pigini A, Longhetto A, Rocchetti F, Cassardo C, Ferrarese S, Forza R (2003) Localization of source and sink regions of carbon dioxide through the method of the synoptic air trajectory statistics. Atmos Environ 37:3757–3770CrossRefGoogle Scholar
  3. Arco Aguilar del MJ (Director) et al (2006) Mapa de Vegetación de Canarias. Universidad de La Laguna. Departamento Biología Vegetal. Grafcan Ediciones. Santa Cruz de TenerifeGoogle Scholar
  4. Aylor DE (2002) Settling speed of corn (Zea mays) pollen. J Aerosol Sci 33:1601–1607CrossRefGoogle Scholar
  5. Begum BA, Kim E, Jeong C, Lee D, Hopke PK (2005) Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos Environ 39:3719–3724CrossRefGoogle Scholar
  6. Belmonte J, Roure JM (1991) Characteristics of the aeropollen dynamics at several localities in Spain. Grana 30:364–372CrossRefGoogle Scholar
  7. Belmonte J, Vendrell M, Roure JM, Vidal J, Botey J, Cadahía A (2000) Levels of Ambrosia pollen in the atmospheric spetra of catalan aerobiological stations. Aerobiologia 16:93–99CrossRefGoogle Scholar
  8. Belmonte J, Alarcón M, Avila A, Scialabba E, Pino D (2008a) Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687. doi: 10.1007/s00484-008-0160-9 CrossRefGoogle Scholar
  9. Belmonte J, Puigdemunt R, Cuevas E, Alonso S, González R, Poza P, Grau F (2008b) Eolo_PAT project: Aerobiology and respiratory allergies in Santa Cruz de Tenerife since 2004. Allergy 63(Suppl 88):498–498Google Scholar
  10. Bergametti G, Gomes L, Coude-Gaussen G, Rognon P, Lecoustumer MN (1989) African dust observerd over Canary Islands—source-regions identification and transport pattern for some summer situations. J Geophys Res-Atmos 94:14855–14864CrossRefGoogle Scholar
  11. Bourgeois JC (2000) Seasonal and interannual pollen variability in snow layers of arctic ice caps. Rev Palaeobot Palynol 108:17–36CrossRefGoogle Scholar
  12. Bousquet J, Khaltaev N, Cruz AA et al (2008) Allergenic rhinitis and its impact on asthma (ARIA) 2008 Update (in collaboration with the World Health Organization, GA2LEN and AllerGen). Allergy 63(Suppl. 86):8–160Google Scholar
  13. Brown JKM, Hovmoller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541CrossRefGoogle Scholar
  14. Burczyck J, DiFazio SP, Adans WT (2004) Gene flow in forest trees: how far do genes really travel? For Genet 11:1–14Google Scholar
  15. Cabezudo B, Recio M, SanchezLaulhe JM, Trigo MD, Toro FJ, Polvorinos F (1997) Atmospheric transportation of marihuana pollen from North Africa to the southwest of Europe. Atmos Environ 31:3323–3328CrossRefGoogle Scholar
  16. Calleja M, Rossignol-Strick M, Duzer D (1993) Atmospheric pollen content off West Africa. Rev Palaeobot Palynol 79:335–368CrossRefGoogle Scholar
  17. Cariñanos P, Galán C, Alcázar P, Domínguez E (2004) Analysis of the particles transported with dust-clouds reaching Córdoba, southwestern Spain. Arch Environ Contam Toxicol 46:141–146Google Scholar
  18. Cecchi L, Morabito M, Paola Domeneghetti M, Crisci A, Onorari M, Orlandini S (2006) Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immun 96:86–91CrossRefGoogle Scholar
  19. Charco J (1999) El bosque mediterráneo en el Norte de África. Biodiversidad y lucha contra la desertificación. Agencia Española de Cooperación Internacional, MadridGoogle Scholar
  20. Coudé-Gaussen G, Rognon P, Bergametti G, Gomes L, Strauss B, Gros JM, Leucoustumer MN (1987) Saharan dust on Fuerteventura Island (Canaries)-chemical and mineralogical characteristics, air-mass trajectories, and probable sources. J Geophys Res-Atmos 92:9753–9771CrossRefGoogle Scholar
  21. Cuevas E (1996) Estudio del Comportamiento del Ozono Troposférico en el Observatorio de Izaña (Tenerife) y su Relación con la Dinámica Atmosférica. Memoria de Tesis Doctoral, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, available (in Spanish) in, ISBAN 84-669-0399-2
  22. Díaz AM, Díaz JP, Exposito FJ, Hernández-Leal PA, Savoie D, Querol X (2006) Air masses and aerosols chemical components in the free troposphere at the Subtropical Northeast Atlantic Region. J Atmos Chem 53:63–90CrossRefGoogle Scholar
  23. Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY website. NOAA Air Resources Laboratory, Silver Spring, Google Scholar
  24. Ellstrand NC (1992) Gene flow by pollen—implications for plant conservation genetics. Oikos 63:77–86CrossRefGoogle Scholar
  25. Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant-populations. Heredity 72:250–259CrossRefGoogle Scholar
  26. Escudero M, Stein A, Draxler RR, Querol X, Alastuey A, Castillo S, Àvila A (2006) Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model. J Geophys Res 111:D06210,  doi:10.1029/2005JD006395
  27. Estrella N, Menzel A, Krämer U, Behrendt H (2006) Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). Int J Biometeorol 54:49–59CrossRefGoogle Scholar
  28. Font I (1956) El Tiempo Atmosférico de las Islas Canarias. Servicio Meteorológico Nacional (INM), Serie A, No. 26Google Scholar
  29. Franzen L (1989) A dustfall episode on the Swedish west-coast, October 1987. Geogr Ann Ser A 71:263–267CrossRefGoogle Scholar
  30. Franzen L, Hjelmroos M (1988) A coloured snow episode on the Swedish west coast, January 1987. A quantitative study of air borne particles. Geogr Ann Ser A 70:235–243CrossRefGoogle Scholar
  31. Franzen L, Hjelmroos M, Kallberg P, Brorstromlunden E, Juntto S, Savolainen AL (1994) The yellow-snow episode of northern Fennoscandia, March-1991-a case-study of long-distance transport of soil, pollen and stable organic-compounds. Atmos Environ 28:3587–3604CrossRefGoogle Scholar
  32. Galán Soldevilla C, Cariñanos González P, Alcázar Teno P, Domínguez Vilches E (2007) Manual de Calidad y Gestión de la Red Española de Aerobiología. Servicio de Publicaciones. Universidad de CórdobaGoogle Scholar
  33. Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW, Kellogg CA, Majewski MS, Richardson LL, Ritchie KB, Smith GW (2003) African and Asian dust: from desert soils to coral reefs. Bioscience 53:469–480CrossRefGoogle Scholar
  34. Gassmann MI, Pérez CF (2006) Trajectories associated to regional and extra-regional pollen transport in the Southeast of Buenos Aires Province, Mar Del Plata (Argentina). Int J Biometeorol 50:280. doi: 10.1007/s00484-005-0021-8 CrossRefGoogle Scholar
  35. Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth-Sci Rev 56:179–204CrossRefGoogle Scholar
  36. Guerzoni S, Chester R (1996) The impact of desert dust across the Mediterranean. Kluwer, DordrechtGoogle Scholar
  37. Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–477CrossRefGoogle Scholar
  38. Griffin DW, Kellogg CA, Shinn EA (2001) Dust in the wind: Long range transport of dust in the atmosphere and its implications for global public and ecosystems health. Glob Change Human Health 2:20–33CrossRefGoogle Scholar
  39. Hart MA, de Dear R, Beggs PJ (2007) A synoptic climatology of pollen concentrations during the six warmest months in Sydney, Australia. Int J Biometeorol 51:209–220CrossRefGoogle Scholar
  40. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265CrossRefGoogle Scholar
  41. Hoh E, Hites RA (2004) Sources of toxaphene and other organochlorine pesticides in North America as determined by air measurements and potential source contribution function analyses. Environ Sci Technol 38:4187–4194CrossRefGoogle Scholar
  42. Hooghiemstra H, Lezine AM, Leroy SAG, Dupont L, Marret F (2006) Late quaternary palynology in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW African setting. Quatern Int 148:29–44CrossRefGoogle Scholar
  43. Kasprzyk I (2008) Non-native Ambrosia pollen in the atmosphere of Rzeszow (SE Poland) Evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int J Biometeorol 52:341–351. doi: 10.1007/s00484-007-0129 CrossRefGoogle Scholar
  44. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644CrossRefGoogle Scholar
  45. Kellogg CA, Griffin DW, Garrison VH, Peak KK, Royall N, Smith RR, Shinn EA (2004) Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia 20:99–110CrossRefGoogle Scholar
  46. Lewis WH, Vinay P, Zenger VE (1983) Airborne and Allergenic pollen of North America. Johns Hopkins University Press, BaltimoreGoogle Scholar
  47. Mabberley DJ (1987) The plant-book: a portable dictionary of the higher plants. Press Syndicate of the University of Cambridge, New YorkGoogle Scholar
  48. Moulin C, Lambert CE, Dulac F, Dayan U (1997) Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 387:691–694CrossRefGoogle Scholar
  49. Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273CrossRefGoogle Scholar
  50. Nilsson S, Praglowski J (1992) Erdtman’s handbook of palynology, 2nd edn. Munksgaard, CopenhagenGoogle Scholar
  51. Polissar AV, Hopke PK, Harris JM (2001) Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ Sci Technol 35:4214–4226CrossRefGoogle Scholar
  52. Polymenakou PN, Mandalakis M, Stephanou EG, Tselepides A (2008) Particle size distribution of airborne microorganisms and pathogens during an intense african dust event in the Eastern Mediterranean. Environ Health Perspect 116:292–296CrossRefGoogle Scholar
  53. Prospero JM, Barett K, Churcha T, Dentener F, Duce RA, Galloway JN, Levy H II, Moody J, Quinn P (1996) Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry 35:27–73CrossRefGoogle Scholar
  54. Prospero JM, Blades E, Mathison G, Naidu R (2005) Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21:1–19Google Scholar
  55. Rivas Martínez S (1987) Memoria del Mapa de Series de Vegetación de España. Publicación ICONA, MadridGoogle Scholar
  56. Rodríguez S (1999) Comparación de las variaciones de ozono superficial asociadas a procesos de transporte sobre y bajo la inversión de temperatura subtropical en Tenerife. Master Thesis, Universidad de La LagunaGoogle Scholar
  57. Rodriguez S, Torres C, Guerra JC, Cuevas E (2004) Transport Pathways to Ozone to Marine and Free-Troposphere Sites in Tenerife, Canary Islands. Atmos Environ 38:4733–4747CrossRefGoogle Scholar
  58. Rodriguez S, Querol X, Alastuey A, de la Rosa J (2007) Atmospheric particulate matter and air quality in the Mediterranean: a review. Environ Chem Lett 5:1–7. doi: 10.1007/s10311-006-0071-0 CrossRefGoogle Scholar
  59. Rogers CA, Levetin E (1998) Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. Int J Biometeorol 42:65–72CrossRefGoogle Scholar
  60. Romero OE, Dupont L, Wyputta U, Jahns S, Wefer G (2003) Temporal variability of fluxes of eolian-transported freshwater diatoms, phytoliths, and pollen grains off Cape Blanc as reflection of land-atmosphere-ocean interactions in northwest Africa. J Geophys Res-Oceans 108(C5):22.1–22.12. doi: 10.1029/2000JC000375/2003 CrossRefGoogle Scholar
  61. Rousseau DD, Duzer D, Cambon GV, Jolly D, Poulsen U, Ferrier J, Schevin P, Gros R (2003) Long distance transport of pollen to Greenland. Geophys Res Lett 30:1765. doi: 10.1029/2003GL017539 CrossRefGoogle Scholar
  62. Rousseau DD, Schevin P, Duzer D, Cambon GV, Ferrier J, Jolly D, Poulsen U (2006) New evidence of long distance pollen transport to southern Greenland in late spring. Rev Palaeobot Palynol 141:277–286. doi: 10.1016/j.revpalbo.2006.05.001 CrossRefGoogle Scholar
  63. Rousseau DD, Schevin P, Ferrier J, Jolly D, Andreasen T, Ascanius SE, Hendriksen SE, Poulsen U (2008) Long-distance pollen transport from North America to Greenland in spring. J Geophys Res-Biogeosci 113:G02013. doi:  10.1029/2007JG000456
  64. Salvador P, Artiñano B, Alonso DG, Querol X, Alastuey A (2004) Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. Atmos Environ 38:435–447CrossRefGoogle Scholar
  65. Schefinger H, Kaiser A (2007) Validation of trajectory statistical methods. Atmos Environ 41:8846–8856CrossRefGoogle Scholar
  66. Schmidt-Lebuhn AN, Seltmann P, Kessler M (2007) Consequences of the pollination system on genetic structure andpatterns of species distribution in the Andean genus Polylepis (Rosaceae): a comparative study. Plant Syst Evol 266:91103. doi: 10.1007/s00606-007-0543-0 CrossRefGoogle Scholar
  67. Seibert P, Kromp-Kolb H, Balterpensger U, Jost DT, Schwikowski M, Kasper A, Puxbaum H (1994) Trajectory analysis of aerosol measurements at high alpine sites. In: Borrel PM, Borrell P, Cvitas T, Seiler W (eds) Transport and transformation of pollutants in the troposphere. Academic, The Hague, pp 689–693Google Scholar
  68. Sharma CM, Khanduri VP (2007) Pollen-mediated gene flow in Himalayan Long Needle Pine (Pinus roxburghii Sargent). Aerobiologia 23:153–158. doi: 10.1007/s10453-007-9056-0 CrossRefGoogle Scholar
  69. Shinn EA, Griffin DW, Seba DB (2003) Atmospheric transport of mold spores in clouds of desert dust. Arch Environ Health 58:498–504Google Scholar
  70. Šikoparija B, Smith M, Skjøth CA, Radišić P, Milkovska S, Šimić S, Brandt J (2009) The Pannonian plain as a source of Ambrosia pollen in the Balkans. Int J Biometeorol 53:263–272CrossRefGoogle Scholar
  71. Siljamo P, Sofiev M, Ranta H (2007) An approach to simulation of long-range atmospheric transport of natural allergens: an example of birch pollen. In: Borrego C, Norman A-L (eds) Air pollution modeling and its applications, vol XVII. Springer, Boston, pp 331–339Google Scholar
  72. Siljamo P, Sofiev M, Severova E, Ranta H, Kukkonen J, Polevova S, Kubin E, Minin A (2008) Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia 24:211–230CrossRefGoogle Scholar
  73. Skjøth CA, Sommer J, Stach A, Smith M, Brandt J (2007) The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy 37:1204–1212CrossRefGoogle Scholar
  74. Skjøth CA, Smith M, Brandt J, Emberlin J (2009) Are the birch trees in Southern England a source of pollen in North London? Int J Biometeorol 53:75–86CrossRefGoogle Scholar
  75. Smouse P, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation snalysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260. doi: 10.1111/j.0014-3820.2001.tb01291 Google Scholar
  76. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402CrossRefGoogle Scholar
  77. Stach A, Smith M, Skjøth CA, Brandt J (2007) Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. Int J Biometeorol 51:275–286CrossRefGoogle Scholar
  78. Stohl A (1996) Trajectory statistics-A new method to establish source-receptor relationships of air pollutants and its applications to the transport of particulate sulphate in Europe. Atmos Environ 30:579–587CrossRefGoogle Scholar
  79. Taylor DA (2002) Dust in the wind. Environ Health Perspect 110:A80–A87Google Scholar
  80. Torres CJ, Cuevas E, Guerra JC, Carreño V (2001) Caracterización de las masas de aire en la región subtropical. Proceedings of the V Symposio Nacional de Predicción. Instituto Nacional de Meteorología, Madrid, pp 10–13Google Scholar
  81. Van Campo M, Quet L (1982) Pollen and red dust transport from South to North of the Mediterranean area. C R Seances Acad Sci III 295:61–64Google Scholar
  82. Viana M, Querol X, Alastuey A, Cuevas E, Rodriguez S (2002) Influence of african dust on the levels of atmospheric particulates in the Canary Islands Air Quality Network. Atmos Environ 36:5861–5875CrossRefGoogle Scholar
  83. Viana M, Querol X, Alastuey A (2006) Chemical characterisation of PM episodes in NE Spain. Chemosphere 62:947–956CrossRefGoogle Scholar
  84. Waisel Y, Ganor E, Epshtein V, Stupp A, Eshel A (2008) Airborne pollen, spores, and dust across the East Mediterranean sea. Aerobiologia 24:125–131CrossRefGoogle Scholar
  85. Wang YQ, Zhang XY, Draxler RR (2009) TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw 24:938–039CrossRefGoogle Scholar
  86. White F (1983) The vegetation of Africa-a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. UNESCO, ParisGoogle Scholar
  87. Wotawa G, Kröger H (1999) Testing the ability of trajectory statistics to reproduce emission inventories of air pollutants in cases of negligible measurement and transport errors. Atmos Environ 33:3037–3043CrossRefGoogle Scholar
  88. Wu PC, Tsai JC, Li FC, Lung SC, Su HJ (2004) Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmos Environ 38:4879–4886CrossRefGoogle Scholar
  89. Wynn-Williams DD (1991) Aerobiology and colonization in Antarctica: the BIOTAS programme. Grana 30:380–393CrossRefGoogle Scholar
  90. Xie Y, Berkowitz CM (2007) The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas. Atmos Environ 41:5831–5847CrossRefGoogle Scholar
  91. Yadav S, Chauhan MS, Sharma A (2007) Characterisation of bio-aerosols during dust storm period in N-NW India. Atmos Environ 41:6063–6073CrossRefGoogle Scholar
  92. Zhang WY, Arimoto R, An ZS (1997) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophys Res 102(D23):28041–28147CrossRefGoogle Scholar

Copyright information

© ISB 2010

Authors and Affiliations

  • Rebeca Izquierdo
    • 1
    • 2
  • Jordina Belmonte
    • 2
  • Anna Avila
    • 1
  • Marta Alarcón
    • 3
  • Emilio Cuevas
    • 4
  • Silvia Alonso-Pérez
    • 4
    • 5
  1. 1.CREAFUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Unitat de Botànica and ICTAUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Departament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.Izaña Atmospheric Research Center (AEMET)TenerifeSpain
  5. 5.Institute of Environmental Assessment and Water ResearchCSICBarcelonaSpain

Personalised recommendations