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Background 
 
 Sand- and Dust Storms (SDS) are a major problem in West Asia, where their main 
characteristics – intensity, extent and frequency – are either not well known or have not yet been 
scientifically addressed. The growing concern of countries in the region about these phenomena 
has led to a number of high-level international meetings in recent years at which the creation of a 
system for SDS monitoring and forecasting has repeatedly been raised.  
 
 The Government of Turkey is also concerned about the occurrence of SDS and their 
impacts and convened a meeting of the Ministers of the Environment of Turkey, the Islamic 
Republic of Iran, Iraq and the Syrian Arab Republic in Ankara on 28 and 29 April 2010. Participants 
discussed a variety of transboundary environmental matters and issued the Ankara Ministerial 
Declaration on 29 April 2010, in which they expressed their desire to enhance cooperation in the 
areas of the environment and meteorology and discussed a number of issues, including SDS. The 
meeting proposed the development of a project to reduce pollution of the environment by dust and 
haze by taking measurements of dust formation, improving meteorological monitoring and 
forecasting, controlling soil erosion and establishing regional cooperation projects. The ministers 
committed to set up a task force consisting of experts from the related ministries or departments of 
the countries concerned, and nominated experts from relevant international organizations, 
including the United Nations Environment Programme (UNEP) and the World Meteorological 
Organization (WMO). The Islamic Republic of Iran led the formation of the task force. 
 
 Two subsequent meetings at both technical and ministerial levels were held in Tehran in 
September 2010 with the additional participation of Qatar. Both the Ankara Declaration and the 
Tehran Action Plan constituted a sound basis for building a regional SDS programme. 
 
 The Regional Conference on Dust and Dust Storms was held in Kuwait City, 20–22 
November 2012, during which UNEP and WMO organized a special session on scientific aspects 
of the regional SDS programme. The Conference highlighted the following issues: 
 
• The significant impact of SDS processes in West Asia and the consequences to transport, 

health and the environment in general. 
• Changes observed in source areas for sand- and dust storms and how these have had an 

impact on the frequency and intensity of SDS events. 
• Concern about how climate change may impact SDS events.  
• Gaps in observations, understanding, modelling, prediction, user services and warnings 

related to SDS processes. 
 
 Some major issues and outcomes were agreed in the Kuwait meeting, including the two 
following recommendations: 
 
• WMO would conduct a survey to identify the existing SDS observing and forecasting 

facilities in the region. 
• A Sand- and Dust Storm Warning Advisory and Assessment System (SDS-WAS) Regional 

Node for West Asia would be established, at the initiative of WMO, to satisfy needs for 
providing/improving SDS observation and forecasting capabilities. 

 
 In November 2012, WMO and UNEP agreed to collaborate in a detailed survey of sand and 
dust phenomena and related capabilities and signed an agreement under which WMO would 
perform a study of the SDS-WAS concept and future activities for the West Asia region, which 
would provide a detailed survey of the necessary human resources and observational, forecasting 
and computational facilities. The study would also recommend necessary action for developing an 
SDS-WAS Regional Node for West Asia, following the concept and best practices of the SDS-WAS 
Regional Node for Northern Africa, Middle East and Europe (NAMEE). 
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 This report, Establishing a WMO SDS-WAS Regional Node for West Asia: Current 
Capabilities and Needs, has been elaborated under the overall supervision of the Director of the 
WMO Atmospheric Research and Environment Branch, with the support of the UNEP Regional 
Office for West Asia. It aims to perform an assessment of the capabilities in SDS monitoring, 
prediction and assessment and provide guidance for establishing an SDS-WAS Regional Node by 
presenting the essential elements to be taken into account. 
 
 The specific objectives of the report are to: 
 
• Review published information on dust storm incidence in West Asia, including the Islamic 

Republic of Iran and Turkey. 
• Compile existing information on dust sources, frequency/intensity of dust storms and the 

socio-economic and environmental impacts of dust 
• Recommend a strategy for dust-model validation. 
• Map regional and national institutions. 
• Propose regional institutional collaboration mechanisms for the monitoring, prediction and 

delivery of dust-related products and services. 
• Propose types and density of measurements, based on existing observation capacity; 
• Propose a multiscale/downscaling dust-forecasting strategy, based on identified existing 

numerical modelling facilities. 
• Propose a regional data-exchange policy. 
• Advise on training and capacity-building programmes on the regional scale. 

 
 The WMO SDS-WAS mission is to enhance the ability of countries to deliver timely and 
quality sand- and dust storm observations, forecasts, information and knowledge to users through 
an international partnership of research and operational communities. It is proposed that the WMO 
SDS-WAS Regional Node for West Asia be established in collaboration with the UNEP Regional 
Programme to Combat Sand and Dust Storms. Through collaborative partnership with UNEP, the 
WMO SDS-WAS Regional Node for West Asia will provide SDS phenomena assessment and 
secure an SDS monitoring and early warning system. 
 
 
A.1 INTRODUCTION 
 
 Mineral-dust loading in the atmosphere is the most abundant of all aerosol species, 
together with sea-salt aerosol in some coastal areas (IPCC, 2001). On the global scale, dust 
mobilization appears to be dominated by natural sources (Tegen et al., 2004) in arid regions 
(Prospero et al., 2002). Topographic lows in deserts are the predominant sources of atmospheric 
mineral dust because, in these regions, fine particles that have been transported by water after 
rainfall are easily eroded and transported by wind during the dry season. 
 
 Several factors determine whether soil particles can be aerosolized: wind velocity, physical 
properties of the soil (e.g. particle size distribution, soil moisture and particle cohesiveness) and 
land-surface conditions (e.g. surface roughness and vegetation cover).  
 
 Soils that are most sensitive to wind erosion and dust emission usually lack protection from 
vegetation, have low soil-moisture content (Marticorena and Bergametti, 1995) and contain readily 
erodible sediments of fine particles (Prospero et al., 2002). The most substantial sources of dust 
aerosols are therefore deserts and dry lakebeds, although dust emissions from vegetation-covered 
land and dunes are also commonly observed.  
 
 Conventionally, dust refers to soil particles with a diameter of < 0.6 mm. In practice, 
however, only those particles smaller than 0.1 mm (100 µm) can be lifted up, transported by 
suspension and be present in a dust cloud. Dust particles move in one of three modes of transport, 
depending on particle size, shape and density of the particle, designated as “suspension”, 
“saltation” and “creep” (see Usher et al., 2003).  
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• Suspension mode includes dust particles < 0.1 mm in diameter and also clay particles 
(2 µm). Through the suspension mechanism, the particles are transported upwards by 
turbulent wind currents. The fine particles may be transported to high altitudes (6–8 km) 
and over distances of thousands of kilometres.  

 
• Saltating particles (i.e. 0.01 < diameter < 0.5 mm) leave the surface up to a height of 1 m, 

but are too large to be suspended, so they settle on the surface owing to the gravitational 
drag forces exceeding particle mass.  

 
• Remaining particles (> 0.5 mm) are transported in creep mode. They roll or slide along with 

the wind, impacting particles on the land surface, favouring the movement of other particles. 
 
 These processes are illustrated in Figure 1. 
 

  
 
	  

 
Figure 1 - Schematic representation of the possible wind-induced entrainment processes to move, emit and transport 

mineral dust particles from source into the troposphere (after Usher et al., 2003) 
 

	  
 
 Dust particles that can be transported thousands of kilometres from their source regions – 
and thereby produce a substantial effect on weather and climate – mainly have diameters smaller 
than 20 µm (Gillette and Walker, 1977; Tegen et al., 1996). 
 
 Dust is moved by the prevailing winds and transported vertically by convective processes, 
as well as adiabatic vertical motion associated with frontal systems. Atmospheric dust settles on 
the Earth’s surface through both molecular and gravitational settling (dry deposition) and wet 
deposition with precipitation (Figure 2). Large particles sediment out more quickly than smaller 
particles in dry deposition processes. Wet deposition can occur either below a cloud, when 
raindrops, snowflakes or hailstones scavenge dust as they fall, or within a cloud, when dust 
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particles are captured by water droplets and descend to the surface in raindrops. Wet deposition is 
sometimes manifested in the phenomenon “blood rains”. Dust atmospheric lifetime depends on the 
particle size, ranging from a few hours for particles larger than 10 µm, up to several weeks for sub-
µm size particles. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 - Physics and modelling of wind erosion: entrainment, transport, deposition and impact on radiation  

and clouds of desert dust: atmospheric conditions, soil properties, land-surface characteristics and land-use practice  
control the erosion process (adapted from Shao, 2008) 

 
 
 
 
A.2  SCIENTIFIC ASSESSMENT OF DUST STORMS IN WEST ASIA: SUMMARY REVIEW 
 OF THE LITERATURE  
  
 This section covers various aspects of dust storms in West Asia (also known as the Middle 
East), such as dust sources and transport, types of dust storm, optical and physical properties of 
dust, vertical structure of the dust layer and a basic climatology of dust specifically produced for 
this report. Since, in the following sections, continuous geographic references are made, and in 
order to facilitate their identification, a map of the region under study is given (Figure 3), although it 
is likely that, for identifying certain areas cited in the report, the reader should consult national 
maps available online. 
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Figure 3 - Map of West Asia (Middle East) 
 
 
 
A.2.1  Dust sources and transport 
 Dust events originate predominantly in arid or semi-arid environments, which account for 
some 33% of the total world land area (Duce, 1995). In fact, the northern hemisphere generates 
some 90% of global airborne mineral dust, where it is also deposited (Duce, 1995). Most “dust 
storm” occurrences are in the region beginning on the west coast of North Africa and extending 
through the Middle East into Central Asia. North Africa is the main dust source area, alone 
responsible for generating more than 50% of the total desert dust in the atmosphere and almost 
five times as much as the second main source, the Arabian Peninsula (see Figure 4). 
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Figure 4 - Location of source areas and scale of dust emissions  

(extracted from De Longueville et al., 2010, adapted from Tanaka and Chiba, 2006) 
 
 The climate in West Asia is mainly affected by three pressure systems (Prospero et al., 
2002): the Siberian anticyclone in winter over central Asia; the monsoon depression in summer 
over the Indian subcontinent; and the depressions travelling from north-western Africa in the non-
summer seasons. Severe dust storms are summertime phenomena associated with the shamal. 
Much of the dust entrained by the shamal is deposited in the Gulf and the Arabian Sea. In some 
areas (e.g. Negev Desert (Israel), Jordan, western and northern Iraq and the northern part of Saudi 
Arabia), the peak dust season occurs in spring and winter. In these seasons, dust storms are 
generated by depressions moving eastward from the Mediterranean.  
 
 When high winds at a threshold speed blow over areas with minimal vegetation cover, soils 
that lack snow and/or soil moisture content or soils that are vulnerable to disturbance, a dust storm 
has the potential to occur (Table 1). Other types of areas that can also be vulnerable to dust 
storms when threshold winds are present are those in which soils have dried out and been 
displaced after a flash flood (University Corporation for Atmospheric Research/Cooperative 
Program for Operational Meteorology Education and Training (UCAR/COMET, 2010) or areas with 
dried-out lakebed sediments. 
  

Table 1 - Wind-speed thresholds for different desert environments: wind-speed threshold refers to the minimum wind 
speed required to lift suspended sediment in a certain environment (from UCAR/COMET, 2010) 
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 According to Prospero et al. (2002), the sources in the Middle East extend in a continuous 
band from the northern part of the Tigris-Euphrates basin to the coast of Oman. The seasonal 
variation of dust activity in the Middle East is complex and varies by region. Over much of the 
peninsula, dust is active all year long, but is relatively low in winter months. Dust activity 
strengthens in March and April, peaks in June and July and weakens in September. 
  
 A first rough estimation of potential dust sources in West Asia can be obtained from the 
type of soil. Silt and clay grounds present fine and very fine particles (< 0.07 mm in diameter) that 
are relatively easily lifted and transported by the wind. In poor vegetation regions, such as the 
Middle East, these particles are exposed to the wind and susceptible to transportation by 
atmospheric flows. The UCAR/COMET map of soil-grain sizes (UCAR/COMET, 2005) (Figure 5) 
shows that the Middle East is a region prone to dust storms.  
 
 

 
 

Figure 5 - Map of soil-grain sizes in the Middle East (from UCAR/COMET, adapted by Anderson, 2004):  
the authors defined different regions according to soil type 

  
  
 Ground-based aerosol detectors have been used for years to observe and measure mineral 
dust transport. Based on the WMO protocol, dust events are classified according to visibility into 
one of four categories (Shao, 2008). The first of these, dust haze, consists of aeolian dust particles 
homogeneously suspended in the atmosphere. These are not actively entrained, but have been 
uplifted from the ground by a dust event that occurred prior to the time of observation or from a 
considerable distance. 
 
 Visibility may sometimes be reduced to 10 km. Blowing dust is the state where dust is 
transported locally by strong winds – at the time of observation – reducing visibility to 1–10 km. A 
dust storm is the result of strong turbulent winds entraining large quantities of dust particles, 
reducing visibility to between 200 m and 1 km. Finally, a severe dust storm is characterized by very 
strong winds that lift up large quantities of dust particles, reducing visibility to less than 200 m. 
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 The simplest approach to estimating dust-source zones and dust storm corridors in West 
Asia is, undoubtedly, to elaborate visibility climatologies from in situ visibility observations provided 
by SYNOP and METAR reports. 
 
 A previous study focusing on the delimitation of the regions in the Middle East according to 
the seasons of main dust activity was carried out by Middleton (1986(a)). He analysed the dust 
distribution over the Syrian Arab Republic, Lebanon, Jordan, Israel, Saudi Arabia, Yemen, Iraq and 
the Islamic Republic of Iran, using short periods of data recording, and other data collected over 
varying lengths of time from the 1950s and 1960s. He showed that the area of greatest dust-raising 
activity were the Lower Mesopotamian Plains, spring or summer being the main season of 
occurrence. He reported that the dust haze experienced off the south-eastern Arabian coast from 
June to August was related to a large-scale dust flow that is thought to originate over the Horn of 
Africa and is part of the south-west monsoon circulation. Moreover, central Saudi Arabia had a 
moderate level of dust storm activity, with Riyadh recording an average of 7.6 dust storm days per 
year and an average of 76 days when blowing dust reduced visibility to less than 11 km. 
 
 An extended climatology following the methodology proposed by Middleton (1986(a)) 
analysed the visibility reduction in the region and was published by Kutiel and Furman (2003) 
(Figure 6). They used eight “three-hour” mean values for each month for a period of 21 years 
(1973–1993) and concluded that Iraq, Saudi Arabia and the Gulf, were the regions reporting the 
greatest occurrence of dust storms. Dust storms in the Islamic Republic of Iran, north-eastern Iraq 
and the Syrian Arab Republic, the Gulf and southern Arabian Peninsula were more frequent in 
summer, while, in western Iraq and the Syrian Arab Republic, Jordan, Lebanon, northern Arabian 
Peninsula and southern Egypt, they occurred mainly in spring.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 - Spatial distribution of maximum visibility reduction occurrence (in percentage of time): circle sizes are 
proportional to the percentage of visibility reduction (after Kutiel and Furman, 2003) 

  
 
 Idso (1976) identified Arabia as one of the five regions of the world where dust storm 
generation was especially intense. Prospero and Carlson (1981) reported that a major zone of dust 
haze was observed in the Arabian Sea during June, July and August and high levels of dust had 
been found off the Omani coast (Tindale and Pease, 1999). 
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 In a second paper in 1986, Middleton (1986(b)) focused his attention on a region located 
further east of West Asia, showing that the highest frequencies occurred at the convergence of the 
common borders between the Islamic Republic of Iran, Pakistan and Afghanistan (see Figure 7, 
after Middleton, 1986(b)). Another area with a high frequency of dust episodes was located on the 
Arabian Sea coast of the Islamic Republic of Iran (Makran) and across the Indus plains of Pakistan 
into north-west India. These data suggest that this region is one of the most important dust-raising 
areas in the world, exceeded in importance only by the Sahara, Arabia and the Taklamakan Desert 
of China (Washington et al., 2003). 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 - The number of dust storm days per year, based on ground observations (after Middleton, 1986(b)) 
 

 
 
 A global picture of dust concentration over Asia based on visibility reports is given in Figure 
8. It stretches from the Arabian Peninsula to Mongolia and China (Middleton, 1986(a); Leon and 
Legrand, 2003). Within this dust belt, major dust activity is evident in the Arabian Peninsula, the 
Middle East and south-west and central Asia, including the Islamic Republic of Iran, Turkmenistan, 
Afghanistan, Pakistan, northern India, the Gobi Desert in Mongolia and the Tarim basin in China 
(Shao and Dong, 2006). 
  
 Tegen et al. (2002) calculated the difference between the simulated maximum lake areas 
and those of the present day, surmising that it was an indication of the extent of paleo-lake 
deposits formed under wetter climatic conditions. These areas are shown in Figure 9, as well as 
some major global dust sources in West Asia or nearby. 
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Figure 8 - Mean dust concentration (averaged over time) for Asia: data used for this graph are derived from 
visibility observations from 27 May 1998 to 26 May 2003 (reprinted from Shao and Dong, 2006) 

 
 

 
 
 

 
 

Figure 9 - Areal coverage of predominant dust sources, calculated from the extent of potential lake areas, excluding areas 
of actual lakes (modified from Tegen et al., 2002) 

  
 
 This first approach, using in situ observations, tends to be insufficient because it includes 
only a few, scattered observation sites throughout specific regions, as in the Middle East. The 
magnitude and geographic coverage of individual dust storms were not fully assessed until satellite 
imaging provided pictures of these events. Remote-sensing instruments have been incorporated 
into dust storm analysis and monitoring, mainly over the oceans: the Advanced Very High-
Resolution Radiometer (AVHRR) (Fraser, 1976; Husar et al., 1997; Durkee et al., 2000; Ozsoy et 
al., 2001; Díaz et al., 2001); Meteosat (Coudé-Gaussen et al., 1987; Moulin et al., 1997; Legrand 
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et al., 2001); Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) (Husar et al., 2001; Falke et al., 
2001; Moulin et al., 2001; Viana et al., 2002) and Moderate Resolution Imaging Spectroradiometer 
(MODIS). Other sensors allowed the researchers to obtain semi-quantitative estimations of dust 
storm intensities and dust sources over land. The first instrument to provide unique and valuable 
information on atmospheric mineral dust over continental surfaces was the Total Ozone Mapping 
Spectrometer (TOMS) (Herman and Celarier, 1997; Chiapello et al., 2000; Torres et al., 2002). The 
Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation 
(MSG) (European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)) 
satellites provides 20 times more information than former Meteosat sensors. A key feature of 
SEVIRI-MSG is its continuous imaging of the Earth in 12 spectral channels with a baseline repeat 
cycle of 15 minutes. The imaging sampling distance is 3 km at the sub-satellite point for standard 
channels, down to 1 km for the high-resolution visible (HRV) channel. It constitutes a unique 
platform for monitoring and tracking dust storms and is extremely valuable for dust nowcasting, 
point-dust source identification and research analysis (Schepanski et al., 2007; Martínez et al., 
2009; Ashpole and Washington, 2012; Eissa et al., 2012). 
 
 Figure 10 shows the global distribution of dust sources as derived from TOMS 
(Engelstaedter et al., 2006), which indicates that the major dust-sources are in the desert regions 
of the northern hemisphere, in the so-called “dust belt” that extends from the eastern subtropical 
Atlantic eastwards through the Sahara Desert to Arabia and West Asia. In fact, the latter is 
considered the second source of atmospheric dust, on the global scale, after the Sahara. 
 
 
 

Figure 10 - May–July seasonal mean for the period 1980–1992 of aerosol index (AI) derived from TOMS satellite 
observations, showing the main dust sources on the global scale forming the dust belt (after Engelstaedter et al., 2006) 

  
 
 Prospero et al. (2002) found good agreement between the absorbing aerosol index (AAI) 
derived from TOMS-AI and topographic depressions (Figure 11), which is a further indication of the 
importance of dry lake areas for global dust emissions. Using TOMS-AI, they showed that dust 
sources, regardless of size or strength, can usually be associated with topographical lows located 
in arid regions with annual rainfall less than 200–250 mm. Although the source regions themselves 
are arid or hyper-arid, the action of water is evident from the presence of ephemeral streams, 
rivers, lakes and playas. Most major sources have been intermittently flooded through the 
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Quaternary period, as evidenced by deep alluvial deposits. Some dust sources in West Asia are 
associated with areas where human impacts are well documented, e.g. the Caspian and Aral Seas 
and the Tigris-Euphrates basin. 
 
 

 
 
 
 

Figure 11 - Dust sources in the global dust belt and their association with topographic relief. This figure is a composite of 
selected monthly mean TOMS-AAI frequency of occurrence distributions (days per month when AAI equals or exceeds 

1.0), shown as isolines on a topographic map (10-min resolution dataset from the US Navy Fleet Numerical Oceanography 
Centre, Monterey, California. Salt and dry lakes are shown in white (after Prospero et al., 2002)  

 
 

 Hickey and Goudie (2007), using TOMS and MODIS data, later identified two additional 
sources in the Middle East and South-West Asia: the Sistan basin and the Tokar Delta (Sudan). 
The Sistan basin is an internal endorheic basin with active deflation of lake and deltaic sediments 
encompassing large parts of south-western Afghanistan and the south-eastern Islamic Republic of 
Iran: one of the driest regions in the world and one subjected to prolonged droughts. The Tokar 
Delta is a large alluvial system produced by the Baraka River and is also in an arid area. Both 
areas are associated with rivers that carry exceptionally heavy silt loads and have a highly 
seasonal and vigorous dust regime which occurs in the dry, hot and windy summer. The Sistan 
basin and the Tokar Delta highlight the importance of wind funnelling and contribute substantially 
to dust intrusions over Pakistan/ Islamic Republic of Iran and the Red Sea, respectively. 
 
 In some cases, a combined strategy of satellite-based information and in situ observations 
has been used to determine high-resolution dust sources as performed by Pease et al. (1999). 
They used sand samples and Landsat imagery to characterize the spatial distribution of sand 
mineralogy, and to evaluate potential sources and transport pathways of sediment in the Wahiba 
Sand Sea in Oman. 
 
 Through mesoscale atmospheric modelling over the Red Sea, Jiang et al. (2009) identified 
two types of coastal mountain-gap wind jets that frequently blow across the longitudinal axis of the 
Red Sea: (a) a summertime eastward-blowing daily wind jet originating in the Tokar Gap on the 
Sudanese Red Sea coast; and (b) wintertime, westward-blowing wind-jet bands along the north-
western Saudi Arabian coast, which occur every 10–20 days and can last for several days. Both 
wind jets can attain speeds of more than 15 m/s, driving dust storms/plumes over the Red Sea 
surface and thus contribute to dust transport in the Middle East. 

 
 Abuduwaili et al. (2010) emphasized the importance of saline dust storms, a kind of 
chemical dust storm originating in dry lakebeds in arid and semi-arid regions, whose characteristics 
are different from common dust intrusions in deposition flux and chemical composition. They 
identified the following areas of saline dust sources that might affect West Asia: the Aral Sea 
(Uzbekistan), Kara Bogaz Gol (Kazakhstan), Dead Sea (Israel/Jordan), seasonal salty wastelands 
(Iraq), Gulf sabkha (Saudi Arabia) and Hamun-i-Mashkel (Islamic Republic of Iran). 
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 Walker et al. (2009) constitutes probably the most comprehensive and detailed approach to 
the identification of dust sources in South-West Asia. Numerous high-resolution (1 km or better) 
images from satellite remote-sensing platforms (i.e. space shuttle, SeaWifs and MODIS) show that 
dust plumes on the scale of 100 km originate from the merging of a multitude of point source 
plumes. The derived 1-km dust enhancement product (DEP) allows dust elevated over land to be 
readily distinguished from other components of the scene and the identification of many small, 
eroding point sources that form the heads of point source plumes. On the basis of this approach, a 
high-resolution (1 km) dust source distribution (DSD) database has been created, using five years 
(2001–2005) of DEP imagery for West Asia. 
  
 Figure 12 shows the US Naval Research Laboratory (NRL) DSD expressed as a grid 
erodible fraction (0.0–1.0) on a 27-km grid. Nearly all the major dust-source regions that have been 
identified for West Asia by station data analysis and in annual mean TOMS-AI values are present 
in the NRL DSD. The following three areas, not highlighted by Middleton (1986(a) and (b)), 
Prospero et al. (2002) and Washington et al. (2003), have been identified by Walker et al. (2009): 
(a) the eastern slopes at the foot of the Sarawat Mountains of Yemen; (b) along the slopes and at 
the foot of the Beyanae Kerman and Pir Shoran mountain ranges of the Kerman Desert, Islamic 
Republic of Iran; and (c) east and west of the Sarlath and Khwaja Amran mountain ranges in 
Afghanistan. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 12 - US NRL DSD for the 27-km grid domain expressed as grid erodible fraction (0.0–1.0): African dust sources 
derived from TOMS DSD (after Walker et al., 2009) 

  
 
 
 Ginoux et al. (2012) performed a global-scale, high-resolution (0.1°) mapping of sources 
based on MODIS Deep Blue (DB) estimates of dust optical depth (DOD) in conjunction with other 
datasets, including land use (Figure 13). This high-resolution dust-source mapping, together with 
better mapping of threshold wind velocities, vegetation dynamics and surface conditions (soil 
moisture and land use) will facilitate the accurate estimation of dust emission in West Asia.  
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Figure 13 - Annual mean frequency distribution of MODIS DB (2003–2009) aerosol optical depth (AOD) (red field), TOMS 

(1980–1991) AI > 0.5 (blue) and Ozone Monitoring Instrument (OMI) (2004–2006) AI > 0.5 (green). The isocountours of TOMS 
and OMI have been removed over oceans for clarity (after Ginoux et al., 2012) 

 
  
 
 
 Focusing on the Middle East, Ginoux et al. (2012) identified the dust sources given in 
Figure 14. As shown below, in Section A.2.6, most of them fit quite well with AOD climatology 
derived from Multi-angle Imaging Spectroradiometer (MISR) satellite sensor observations and with 
AOD/DOD climatologies obtained with model (MACC and NMMB/BSC-Dust) reanalysis. 
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Figure 14 - Distribution of the percentage number of days per season (March, April and May) with DOD from MODIS DB 
 > 0.2 over the Middle East: the sources in white circles are numbered as follows: 1 – Chalbi Desert (Kenya);  2 – coastal 
desert of Somalia; 3 – Nogal Valley (Somalia); 4 –Danakil Desert (Ethiopia); 5 – Lake Tana (Ethiopia); 6 – north-eastern 

Sudan; 7 – Hadramawt region (Yemen); 8 – Empty Quarter (Saudi Arabia); 9 – highlands of Saudi Arabia; 10 – Jordan River 
basin (Jordan); 11 – Mesopotamia; 12 – Urumia Lake (Islamic Republic of Iran); 13 – coastal desert of Islamic Republic of 

Iran; 14 – Hamun-i-Mashkel (Pakistan); 15 – Dasht-e Lut Desert (Islamic Republic of Iran); 16 – Dasht-e Kavir Desert (Islamic 
Republic of Iran); 17 – Qobustan (Azerbaijan); 18 – Atrek delta (Turkmenistan); 19 – Turan plain (Uzbekistan);  

and 20 – Aral Sea (Kazakhstan-Uzbekistan) (after Ginoux et al., 2012) 
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 The global picture of high-resolution dust sources can be validated, complemented and 
enriched with country-scale studies, such as that of Al-Dabbas et al. (2011), using statistics of 
suspended dust observations. In Figure 15, the monthly mean number of days with dust storms in 
the period 1971–2000 and the monthly mean of deposited dust (g/m2) in the period 1993–2007 in 
Iraq are shown. Lower Mesopotamia is the most affected region. The origin of high atmospheric 
dust in Iraq is caused by local/regional dust resuspension, confirming that Lower Mesopotamia is 
one of the most significant dust sources in the Middle East.  

  

Figure 15 - Monthly mean number of days with dust storms in the period 1971–2000 (left) and monthly mean of deposited 
dust (g/m2) in the period 1993–2007 period (right) in Iraq (after Al-Dabbas et al., 2011) 

 
 
 Keramat et al. (2011) showed an increase in dust sources over the Syrian Arab Republic 
and Iraq in the 20th century. In the period 1994–1999, the number of dust sources over this region 
was 14, which increased to 50 in the period 1999–2009. They do not explain the methodology 
followed for the identification of dust sources, however. 
 
 Recently, Al-Dousari and Al-Awadhi (2012) published an article in which the main sources 
of mineral dust and the path of dust storms in the north-west region of the Gulf are described (see 
Figure 16). 
 
 Gerivani et al. (2011) conducted a zoning of areas susceptible to dust sources in the 
Islamic Republic of Iran and Iraq, using geological maps and precipitation climatologies. 
Concerning eastern Islamic Republic of Iran, the comprehensive study performed by Rashki (2012) 
describes the dust sources in detail. The Sistan region is located in the south-east, close to the 
borders with Pakistan and Afghanistan. Severe droughts during the past decades, especially since 
1999, have caused desiccation of the hamoun lakes that are located in the northern part of Sistan, 
leaving a fine layer of sediment that is easily lifted by the wind, thus making the basin one of the 
most active dust sources in South-West Asia. Khoshhal Dastjerdi et al. (2012) analysed the 
synoptic systems (western Islamic Republic of Iran) on dusty days at 11:00 UTC to identify the dust 
sources impacting this region, concluding that dust is mainly transported from Syrian Arabic 
Republic, Iraq and Saudi Arabia. Ranjbar Saadatabadi and Azizi (2012) obtained similar results 
from the case study of a strong dust storm. Darvishi et al. (2013) found two main dust storm 
sources affecting western Islamic Republic of Iran. The first is the area between the west bank of 
the Euphrates and the east bank of the Tigris and the second is the eastern and south-eastern 
Arabian Peninsula, a region called Rub’ Al Khali (Empty Quarter). They determined how these dust 
sources impacted the western Islamic Republic of Iran using a combined approach of dust 
detection with remote-sensing techniques, hybrid single particle Lagrangian integrated trajectory 
(HYSPLIT) modelling, soil-texture, land-cover and wind-velocity data. 
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Figure 16 - Major and intermediate sources of dust and their corresponding trajectories over north-western areas of the 
Gulf (after Al-Dousari and Al-Awadhi, 2012) 

   
  
 Turkey must be treated separately, since most of the dust intrusions impacting this country 
originate in the Sahara. According to Kubilay and Saydam (1995) and Kubilay et al., 2000; 2003; 
and 2005), most of the dust outbreaks recorded in Turkey originated in different regions of the 
Sahara, the most important being observed in spring. Dust flows from the south-east (northern 
Middle East) are infrequent, as can be seen in Figure 17 (right). No significant dust sources are 
found in Turkey. 
 

 

   
Figure 17 - April mean TOMS-AAI distribution obtained by averaging 21 years of daily data at each pixel of the analysis 

region (left). Three-day back trajectories for high-altitude transport events arriving at 700-hPa and 500-hPa pressure levels 
at Erdemli, Turkey  represent selected events out of a total of 67 during 1991–1992 and 1996–2002 (right) 

 (after Kubilay et al., 2005). 
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A.2.2  Types of dust storm 
 The atmospheric phenomena that produce dust events are on a variety of scales, including 
synoptic, regional, local, as well as turbulent, scales and can take a variety of forms. In West Asia, 
however, most of them can be classified within one of the following three types: shamal, frontal and 
convective. A detailed description of the different types of dust storm is given by Wilkerson (1991). 
A brief summary of this work and others follows. 
 
A.2.2.1 The summer and winter shamal 
  The term shamal means “north” in Arabic (Middleton, 1986(a) and refers to the prevailing 
wind direction from which this type of dust storm comes. They are common across Iraq, Kuwait 
and the Arabian Peninsula. The shamal produces the most widespread hazardous weather 
conditions known in the region. They can be observed in summer and winter but the characteristics 
of the two are quite distinct.  
 
 The summer shamal is also known as the “wind of 120 days”, since it blows almost daily 
during the entire summer from June to September. It has different names in different countries. For 
example, in Kuwait, the shamal is known as simoon, which means “poison wind” (Middleton, 
1986(a)). It is basically generated by the following meteorological patterns: high pressure over 
northern Saudi Arabia, low pressure over northern Afghanistan and thermal low pressure 
associated with the monsoon over southern Saudi Arabia, producing and enhancing winds over the 
Gulf. A feature of summer shamal is that visibility on the ground rapidly (a matter of minutes) drops 
to near zero for one to three hours before increasing slowly. Another interesting feature of dust 
storms associated with summer shamal is that they move like giant walls of dust. The height of the 
walls can vary between 1 km and 2.5 km but, in some strong dust storms, can reach 4.5–5.5 km. 
Summer shamal dust storms can last from one to 10 days but, as they are caused by synoptic 
pressure systems, normally last three days. The most affected region by summer shamal is central 
and southern Iraq.  
 
 The winter shamal normally originates from cold post-frontal systems and the associated 
dust storms are given local names such as blat (Soltani, 1990) or belat (Middleton, 1986(a)) in 
southern Saudi Arabia. These dust storms are normally very strong and the dust is the best way of 
locating the leading edge of the cold front. They are well observed by infra-red imagery, which 
frequently shows a dome of dust covering a large part of the Arabian Peninsula. Dust storms from 
winter shamal also cause a severe reduction in horizontal visibility and near-zero visibilities are not 
uncommon. Typical surface winds of these dust storms are 30–60 km/h, but gusts can be higher 
than 75–90 km/h. The persistence of dust storms associated with winter shamal varies, depending 
on the frontal system movement, and is generally either 24–36 hours or 3–5 days. The 24–36 hour 
shamal occurs when a frontal system migrates across the region (Figure 18: the associated dust 
outbreaks move across the length of the Gulf in 12–24 hours and can arrive at the southern coast 
of the Arabian Peninsula and Islamic Republic of Iran within 48–72 hours (Wilkerson, 1991). The 
“short-time” winter shamal is relatively common and occurs 2–3 times a month. When a cold front 
becomes stationary over the region, however, the dust outbreaks can last 3–5 days (Perrone, 
1979). These “long-time” winter shamal episodes occur 1–3 times each winter, producing the 
strongest winds and highest seas in the Gulf.  
 
 A few winter shamal events are not associated with frontal systems but are caused by the 
funnelling of very cold air masses from Turkey or the Syrian Arab Republic southwards along the 
Tigris/Euphrates River valley in Iraq and over the Gulf (Wilkerson, 1991). They result in a narrow 
tongue of cold, dry and gusty winds, known as a “density current head” (Lawson, 1971), forcing 
warmer air and dust in its path aloft. 
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Figure 18 - A three-day summer shamal dust storm over Iraq and the Arabian Peninsula: dust is observed in 
pink with a tone more intensive the higher the dust content in the atmospheric column  

(17 June 2008, 08:00 UTC, Meteosat-9, EUMETSAT) 
  
   
A.2.2.2 Frontal dust storms 
  Frontal storms mix the dust in the air and transport it great distances. There are three types 
of frontal dust storms: prefrontal, postfrontal and shear-line.  
 
 Prefrontal dust storms take place across Jordan, Israel, the northern Arabian Peninsula, 
Iraq and western Islamic Republic of Iran as low-pressure areas move across the region 
(Wilkerson, 1991). The polar jet (PJ) and the subtropical jet (STJ), associated with a front, play an 
important role in lifting dust aloft (Figure 19). The PJ behind the front and STJ in front of it often 
converge into a single maximum jet. The overlapping of the jet scores and coupling of secondary 
circulations in the right rear of the PJ and left front of the STJ enhance upper vertical velocities and 
increase lifting of the blowing dust (Figure 20). A good example is given in Figure 21. 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

Figure 19 - Polar jet and subtropical jet in a prefrontal dust storm (from Wilkerson, 1991) 
 (COMET project: www.meted.ucar.edu/mesoprim/dust/print.htm) 
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Figure 20 - Prefrontal dust storm over the Arabian Peninsula  
(COMET project: www.meted.ucar.edu/mesoprim/dust/print.htm) 

  

 Prefrontal winds are known as sharqi in Iraq, kaus in Saudi Arabia, shlour in Syrian Arab 
Republic and Lebanon and khamsin in Egypt (Middleton, 1986(a)). Most of these winds are south-
easterly. Soltani (1990) reported on the dry south-westerly suhaili, which occurs after the kaus, and 
extends across Jordan, northern Saudi Arabia, Iraq and Kuwait. Wind speeds associated with 
prefrontal dust storms are 20–40 km/h with occasional gusts of 45–55 km/h, normally lower than 
those of the summer and winter shamal (postfrontal winds) (Wilkerson, 1991). 

 

 

 

 

 

 

 

Figure 21 - Dust storm outbreak affecting Riyadh, Saudi Arabia, on 10 March 2009 at 09:00 UTC, showing the presence of  
PJ and STJ (left) (source: Meteosat-9): the dust storm disrupted flights at the city's King Khalid International Airport and 

the weather authorities announced that visibility dropped to zero (photograph: Jad Saab/AP) 
 
 
 
 Postfrontal dust storms (Figure 22) occur during the winter months, when shamal conditions 
exist behind a cold front. As the front moves across the dust-source regions of Iraq or Saudi 
Arabia, widespread dust is generated by the winds behind it. 
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Figure 22 - Postfrontal dust storm over the Arabian Peninsula and North Africa  
(COMET project: www.meted.ucar.edu/mesoprim/dust/print.htm) 

  
  
 Another mechanism that causes dust storms is that of shear lines, which are frequent in 
winter across the Arabian Peninsula and the Red Sea. Shear lines are the result of the 
convergence of north-easterly wind flow to the south of a polar high-pressure cell and the easterly 
trade-wind flow. A narrow band of maximum winds that lifts dust into the air is found along the 
shear line as it moves slowly southward. Wind speeds along a shear line typically fall within the 
20–45 km/h range with gusts of 55–75 km/h. Sometimes, moisture creates narrow clouds along the 
convergent frontal zone, with blowing dust to the northern side of the cloud (Wilkerson, 1991).  
 
 

 
 

Figure 23 - Example of a shear-line dust storm over the Arabian Peninsula and the Arabian Sea as a cold front weakens 
across Pakistan/north-western India (source: Jochen Kerkmann (EUMETSAT), presentation of the EUMETSAT/WMO Virtual 

Training Week on Detecting/Nowcasting/Forecasting Dust Clouds using Satellite Data (March 2010)) 
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A.2.2.3 Convective dust storms 
  There are basically three types of convective dust storms: haboobs, dust devils and 
inversion downburst storms. Of a much smaller spatial scale than frontal and shear-line storms and 
occurring on much shorter temporal scales, convective dust storms are difficult to monitor and 
forecast. 
  
 Haboobs are essentially strong dust storms generated by downward rush winds from a 
thunderstorm, resulting in a giant wall of dust associated with the outflow boundary (Figures 24 and 
25). A typical scenario is a severe thunderstorm developing over Saudi Arabia and moving towards 
the Gulf. The mechanism of a haboob is the following: as cool air sinks and heavy rains bubble out 
under a thunderstorm, a zone of stronger winds in the mesoscale high-pressure area is created. 
Because of the very dry desert environment, the raindrops evaporate before reaching the ground. 
The strong winds of subsiding air form a “blast wave” lifting up large amounts of dust – even sand 
– and rapidly rising and changing dust towers can be seen at the same time along the leading 
edge of the haboob (Powell and Pedgley, 1969). This mechanism is similar to that of the density 
currents described earlier in winter shamal events. The formation and propagation of density 
currents are well-studied processes in fluid dynamics. Normally, a haboob moves at 45 km/h, but 
wind inside can reach 90 km/h. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24 - A sandstorm enveloping a 
gas rig near Dammam in eastern 

Saudi Arabia 
 (source: 

http://www.desertaquaforce.com) 
 

 

   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 25 - Haboob at Al Asad, Iraq, 
2007 (James Gordon, Flickr) 
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 The formation of a convective cool pool and the associated dust mobilization, as well as the 
physical processes involved in the mobilization of dust, are well described for a representative 
event over the western part of the Sahara by Solomos et al. (2012). 
 
 Haboobs are relatively small (usually covering no more than 100–150 km) and move 
quickly. Their average height ranges from 1.5 to 2.5 km, but much higher ones (3-4 km) have been 
reported in North America (Idso et al., 1972). Visibility is drastically reduced to 200 m – even less 
inside the haboob (Lawson, 1971) – increasing some three hours (average duration) after the gust 
front passes. Most of the dust particles range from 10 to 50 µm (Lawson, 1971), but larger particles 
(up to several millimetres) can be blown about (Foster, 1969). The larger particles settle rapidly by 
gravity after the wind subsides, whereas the finer ones settle at about 300 m/h, when the haboob 
finally dissipates. Haboobs are much more difficult to forecast than synoptically forced dust storms 
and rely largely on nowcasting. Miller et al. (2008) analysed in detail the haboob activity common in 
this region. They used multidisciplinary observations (satellite, radar, lidar and meteorological 
station network observations) from the United Arab Emirates Unified Aerosol Experiment (UAE2), 
an extensive field programme conducted over the south-eastern Arabian Peninsula during the 
summer of 2004. They provided an idealized model of haboob dust production, concluding that 
haboobs could be responsible for a significant component of the total regional-scale dust 
production (up to 30% over a 1 000 × 1 000 km domain). 
 
 Dust devils are small cyclonic circulations formed in arid climates when a strong lapse rate 
coincides with strong surface heating. Dust devils lift dust, sand and even small bushes up to 
heights that range from a few metres to 1–2 km. Dust dissipation is quite fast. They are quite small, 
ranging from a few metres to several hundred metres in diameter with a short lifetime and occur 
sporadically across the desert, making it impossible to forecast them (they can be easily avoided, 
however, since they are clearly visible). The only solution is to determine the most favourable 
conditions for their formation. Surface conditions must be very dry and air temperature must reach 
about 27°C. A weak gradient, with light and variable wind is most favourable. Skies are normally 
clear or with high cloud. Over slightly sloping ground, dust devils tend to move towards higher 
terrain.  
 
 Inversion downburst storms are convective windstorms that occur on sloping coastal plains 
with a strong sea breeze. As this intensifies, convergence along the front can generate sufficient lift 
to break a capping inversion. This potential instability results in the downward mixing of cool air 
aloft, which flows downslope and out over the water. The descending air produces roll vortices and 
potentially severe local dust storms along the coast. The inversion is then re-established and the 
event dies out (COMET project: www.meted.ucar.edu/mesoprim/dust/print.htm). Inversion 
downburst storms are formed in coastal terrain where slopes are at least 3 m/km, such as those 
found along the Red Sea and the Gulf. They occur when the sea breeze exceeds 30 km/h and 
there is inversion aloft, but not a particularly strong one. The downburst winds last 15–45 minutes 
and reach speeds of typically 40–45 km/h. These storms are limited in size, although they can still 
reduce visibility to less than 2 km, depending on local surface-soil conditions. Inversion downburst 
storms typically lead to a narrow streamer of dust out over the Gulf. 
 
 Interesting case studies of different dust storms that have occurred in West Asia countries 
can be found. Alharbi et al. (2012) analysed a huge dust storm over Saudi Arabia in March 2009, 
which was triggered and sustained by a cold front passage coincident with the propagation of a 
pre-existing intense upper-level jet stream. Monikumar and Revikumar (2012) analysed the 
meteorological causes for the occurrence of unprecedented widespread dust followed by a 
thunderstorm over Qatar and neighbouring areas of the Middle East on 4 February 2010. In this 
case, a cold-air high over Saudi Arabia initiated a north-westerly shamal, which triggered a dust 
event over parts of the Arabian Peninsula. 
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 In general, environmental conditions favourable for the generation and transport of dust are 
potentially predictable at long lead-times (Bartlett, 2004): 
 
-‐ Wind at low levels (high speeds, direction that favours high speeds and turbulence, 

occurrence over and direction away from dust sources) 
-‐ Low precipitation 
-‐ Low relative humidity 
-‐ Low soil moisture 
-‐ High temperature at surface and low levels 
-‐ Turbulence at low levels 
-‐ Little land-surface vegetation 
-‐ Human disruption of the land surface. 
 

A.2.3  Aerosol/dust concentration, size distribution and chemical composition 
 Modaihsh (1997) obtained some of the first results on the composition of aerosols in Saudi 
Arabia, especially in Riyadh. He analysed dust samples on a monthly or bi-monthly basis at eight 
different locations in Riyadh from March 1991 to February 1992 and concluded that fallout 
sediments are mainly represented by two textural classes – loam and silt loam – of which silt is the 
dominant fraction. Quartz and calcite were the dominant minerals in the dust samples. All the dust 
samples presented a high calcium-carbonate (CaCO3) content ranging from 22% to 47% with an 
average of 32%. High values of CaCO3 are typical of soils rich in limestone and dolomite, which 
are abundant in the calcareous soils of Saudi Arabia, particularly in the Arabian shelf. According to 
the author, similar results were reported in Iraq by Kukal and Saadallah (1973), who found that 
CaCO3 was as high as 69% in dust storms. Khalaf and Al-Hashash (1983) also found that 
calcareous silt was the most abundant and frequent size class in Kuwait dust fallout. Another 
significant finding of Modaihsh (1997) was the elevated concentrations of heavy metals, such as 
lead, zinc, cadmium, nickel and cobalt, detected in the fallout sediments, that were caused by 
dense local vehicular traffic and also by the burning of oil fields in Kuwait. Researchers in Saudi 
Arabia (Al-Tayeb and Jarrar, 1993) reported similar results and conclusions. A mixture of mineral 
dust with heavy oil-derived components is therefore a permanent feature of aerosol/dust 
composition in much of Saudi Arabia. 
 
 UAE2 undoubtedly provided an enormous amount of valuable scientific information about 
the composition of atmospheric aerosol in the Arabian Peninsula, although the results correspond 
only to summertime (Reid et al., 2005). Aerosol particle loadings provided by UAE2 showed a clear 
dominance of airborne dust, with an important admixture of pollution aerosols. Typically, total 
suspended particulate (TSP) matter was of the order of 100–300 µg/m3, with concentrations of 
particulate matter with diameter less than 10 µm (PM10) being about two-thirds of these values. 
Although dust in general is composed of clays and alumina-silicates, the authors reported that dust 
was enriched by shallow oceanic deposits, with oceanic carbonate deposits underlying most of the 
region. They recorded extremely high carbonate concentrations during some of the dustiest days. 
PM with diameter less than 2.5 µm (PM2.5), a key air-quality index, averaged 35 µg/m3 during 
UAE2 with a maximum value of up to 80 µg/m3. In other pollution episodes, a co-existence of 
pollutants and mineral dust was observed. Another notable result was that pollution composition 
was surprisingly free of organic matter (Reid, 2005). According to these authors, simple ammonium 
sulphate accounted for nearly 60% of PM2.5 dry mass, followed by ∼25% from coarse-mode dust. 
Only ∼20% of mass can be contributed to black carbon (soot) or particulate organic matter. These 
results are consistent with the fact that most of the pollution comes from the petroleum industry 
and, in particular, from flares and power plants. The interaction of mineral dust with fresh pollution 
from petroleum-derived industry is a singular characteristic in aerosol samples and many areas of 
the Arabian Peninsula. Averaged apportionment of PM2.5 is shown in Figure 26.  

 According to Reid et al. (2005), although measured values for PM2.5 pollution are 
considered high compared to those in the USA and Europe, they are better than most other 
polluted regions of the world. We must take into account that these samples were taken in one of 
the worst air-quality months of the year when there is also a significant dust contribution. They also 
found a diurnal variation driven by the land-/sea-breeze regime, which influences significantly the 
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relative vertical distribution of dust and brings, in turn, more complexity to the aerosol 
characterization. 
 
 Ross et al. (2005) provided information about the fine mode of aerosols from measurement 
stations on the UAE coast during UAE2. They reported that ammonium sulphate is the most 
prevalent constituent of the fine-mode aerosol in the region (57% of the mass), followed by organic 
matter (13%), alumina-silicates (11%), calcium carbonate (9%) and black carbon (4%) (Figure 26). 
On the other hand, they concluded, from source apportionment, that most of the fine aerosol mass 
is derived from fossil-fuel combustion (72%), while mineral dust (20%) and local vehicle emissions 
(9%) also contribute to the fine aerosol loading. They argued that the dominance of sulphates 
means that the fine-mode aerosol in the region is probably responsible for a negative radiative 
forcing and that the polluting emissions significantly elevate the concentration of cloud 
condensation nuclei (CCN). 
 

 

Figure 26 - Average apportionment of PM2.5 pollution during UAE2 (from Reid et al., 2005) 
 
  
 Reid et al. (2008(b)) examined the characteristics of common mode dust (0.8 < diameter 
< 10 µm) finding experimental evidence that, on regional scales, common mode dust is not 
functionally impacted by production wind speed, but rather influenced by soil properties, such as 
geomorphology or roughness length. Similarly, they found that transport processes, from the 
mesoscale to near-synoptic scale, do not significantly impact common mode dust size, either. They 
found that coarse-dust mode had a median diameter in the order of ∼3.5 µm ± 30%. 
 
 Elassouli (2011) found that the PM10 averages in Arafat and Muzdalifa near Jeddah 
(western Saudi Arabia) were 158 µg/m3 and 444.5 µg/m3, respectively, which exceeded the 
maximum daily threshold of 150 µg/m3 established by the air-quality authority. 
 
 Khodeir et al. (2012) conducted a multi-‐week, multiple-site sampling campaign in Jeddah 
between June and September 2011 and analysed samples by X–ray fluorescence. The overall 
mean mass concentration was 28.4 ± 25.4 µg/m3 for PM2.5 and 87.3 ± 47.3 µg/m3 for PM10, with 
significant temporal and spatial variability. They found an average ratio of PM2.5/PM10 of 0.33. 
Concerning chemical composition, they found components from heavy oil combustion in both 
PM2.5 and PM10, characterized by high nickel and vanadium concentrations, re-suspended soil 
(mineral dust) characterized by high concentrations of calcium, iron, aluminium and silicon and a 
mixture of industrial source components. In PM2.5 they found lead, bromine and selenium – 
pollution typical of road traffic. In PM10, marine aerosol components were also present.  
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 In Saudi Arabia, Hyvärinen et al. (2013) performed measurements of particle-size 
distribution from 7 nm to 850 nm at Hada Al Sham (21.8°N, 39.7°E, 254 m asl), situated about 60 
km east of Jeddah, on the Red Sea coast. These measurements revealed a diurnal variation of the 
different particle-size modes, indicating that aerosols in Hada Al Sham have many sources, 
contributing to different sized particles. They concluded that new particle-formation events might be 
related to sulphate emissions from heavy oil combustion in western Saudi Arabia, such as from oil 
refining. These anthropogenic aerosols, mixed with mineral dust particles, are found during dust 
events.  
 
 Results from chemical composition of dust in Iraq, one of the major dust sources of the 
region, performed by Al-Dabbas et al. (2011), indicate that dust samples are composed mainly of 
silt (53%) and sand (19%). Most of the dust content was clay and silt with lower quantities of sand. 
The wind speed associated with a dust storm is critical for transporting dust particles of less than 
63 µm in the dry season. Their results of the analysis with the X-ray diffraction method reflect that 
the recognized minerals are quartz, feldspar, calcite and gypsum. Clay minerals for the different 
slides were palygorskite, illiteillite, kaolinite, chlorite, montmorillonite and smectites. The presence 
of palygorskite and kaolinite reflects the arid and semi-arid climatic conditions. The formation of 
chlorite reflects an arid or semi-arid climate with an alkaline environment, while illite is common in 
desert soils. 
 
 In the Islamic Republic of Iran, Keramat et al. (2011) suggest the possibility of dust 
contamination with chemical, biological and radioactive components during the period 1980–1988. 
They indicate, for example, that the amount of elements such as uranium, thorium, arsenic, lead, 
zinc, nickel and cobalt in these samples is slightly higher than normal. They do not, however, 
provide a scientific reference supporting this assessment. Shahsavani et al. (2012) studied the 
average concentrations of PM10, PM2.5 and PM1 from April to September 2010 in Ahvaz, a city 
influenced to a considerable degree by dust transported from southern Iraq by the shamal. They 
reported average concentrations of PM10, PM2.5 and PM1 in Ahvaz over the study period of 320-
407 µg/m3, 70-83 µg/m3 and 37-35 µg/m3, respectively, but a peak concentration of 2028 µg/m3 in 
July, indicating the huge dust concentrations that may be recorded in the region. Shirkhani-
Ardehjani (2012) presented typical PM10 concentration values in several cities (Table 2). The 
annual PM10 concentration in most of the cities was >75 µg/m3, representing a potentially high 
impact on human health. 

 
 

Table 2 - PM10 concentrations in several Iranian cities in 1999 and in the period 2008–2009 (after Shirkhani-Ardehjani, 2012) 
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 The work of Rashki (2012) focused on the Sistan region (south-eastern Islamic Republic of 
Iran) but the results can be extrapolated to large areas of West Asia. He showed that, in 
descending order, quartz, calcite, muscovite, plagioclase and chlorite were the main mineralogical 
components of the dust present in all the selected airborne dust samples. In contrast, significantly 
lower percentages for enstatite, halite, dolomite, microcline, gypsum, diopside, orthoclase and 
hornblende were found, with these elements occurring in only some of the samples. On the other 
hand, silicon dioxide, calcium oxide, aluminium oxide, sodium oxide, magnesium oxide and iron 
(III) oxide were the major elements characterizing the dust, while large amounts of fluorine, 
chlorine and sulphur were also found as trace elements. Rashki illustrates how aerosols/dust 
sampled at two adjoining stations were quite similar but showed some differences in their 
composition as well as in the composition of the soil (Figure 27). These two stations are located to 
the south of Hamoun and to the north of Zabol city. Thus, chemical analysis of aerosols/dust is 
essential for knowing the origin of atmospheric dust and potential contamination with 
anthropogenic emissions. Nabi Bidhendi and Halek (2007) used six-stage high-volume cascade 
impactors to measure PM at 20 sites in the area of Tehran and obtained detailed measurements of 
aerosol size distribution in Tehran’s atmosphere during 2004 at five sites. Results showed an 
interesting mix between mineral dust and city pollution, mainly from traffic. 
 
	  

 
Figure 27 - Average mineralogy components for airborne dust samples at stations A and B and for soil samples obtained at 
various locations in the Hamoun basin: the vertical bars express one standard deviation from the mean (after Rashki, 2012) 
 
 
 Güllü et al., (2000) assessed the concentrations of elements and ions measured in aerosol 
samples collected between March 1992 and December 1993 in Antalya (Turkey), to understand 
temporal variability of elemental concentrations. They reported that strong, short-term variations of 
crustal elements, such as aluminium, calcium, potassium, scandium, titanium, manganese, iron, 
cobalt, rubidium, caesium, barium, lanthanite, samarium, cerium, ytterbium, lutetium and thorium 
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are observed during spring and autumn. Two components of soil-related material are found in the 
eastern Mediterranean atmosphere, namely, dust transported from North Africa and re-suspended 
local soil. Episodic transport of dust from the Sahara Desert and arid regions of the Middle East are 
other important sources of crustal material observed in the eastern Mediterranean. Koçak et al. 
(2007) analysed PM2.5 and PM10 data at Erdemli, a rural site in Turkey. They observed that the 
highest levels of PM10 occurred in spring (March, April and May) due to mineral dust transported 
from North Africa and during winter from sea-spray generation. From source-apportionment 
analysis, they indicated that PM10 exceedances originated as a consequence of natural events 
(mineral dust ∼40%; sea salt ∼50%), whereas PM2.5 exceedances were accounted primarily by 
pollution events (in 90% of cases). 
 
 Nickovic et al. (2012(a)) developed a global dataset consisting of the mineral composition of 
the current potentially dust-producing soils. Because of the lack of sufficiently resolved information 
on the mineral content in sources, the current dust numerical models either do not simulate, or 
poorly simulate, the ways in which mineral fractions evolve and transform during atmospheric 
transport. The authors have mapped soil-mineral data to a high-resolution, 30-s grid (GMINER30; 
see Figure 28), including several mineral-carrying soil types in dust-productive regions that were 
not considered in previous studies (yermosols, haplic yermosols and xerosols). They also 
supplemented the table with phosphorus fractions in soils. When applied in atmospheric dust 
models, the GMINER30 data could be used to specify the emissions of mineral fractions in 
potential dust-producing soils. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 28 - Global distribution of the effective mineral content in soil in percentages for (a) quartz, (b) illite, (c) kaolinite,  
(d) smectite, (e) feldspar, (f) calcite, (g) hematite, (h) gypsum and (i) phosphorus: the mineral fraction is weighted with the 

clay and silt content in soil; for minerals that are present in both clay and silt, the weighted values are summed  
(after Nickovic et al., 2012(a)). 

 
 
 

A.2.4 Optical properties of atmospheric dust 
 In order to facilitate interpretation of the results in this and following sections, some simple 
definitions and explanations of the most important optical properties of aerosols are briefly 
introduced. 
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 Aerosol optical depth (AOD) is defined as the integrated extinction coefficient over a vertical 
column of unit cross-section, and provides information about the degree to which aerosol particles 
prevent the transmission of light. 
 
 Ångström exponent (AE) is the name of the exponent in the formula that is usually used to 
describe the dependency of AOD on wavelength. AE is inversely related to the average size of the 
particles in the aerosol: the smaller the particle, the larger the exponent. AE is therefore an indirect 
measurement of the size of aerosol particles present in a given column of air. AE provides 
information about the dominance of fine- and coarse-mode particles. 
 
 Extinction coefficient is a parameter that accounts for the attenuation of intensity (energy) of 
solar radiation by the scattering and absorption of aerosol particles. 
 
 Scattering coefficient is an optical property of aerosols that defines the distribution of 
scattering light around the particle. Scattering is the process by which a particle in the path of the 
electromagnetic wave scatters the incident radiation in all directions around it. The distribution of 
scattering is dependent on the size and shape of the particle. 
 
 Absorption coefficient defines the capability of an aerosol particle to absorb and then re-
emit energy, i.e. sunlight. The strong increase in atmospheric absorption of solar radiation could be 
due to the presence of high concentrations of absorbed mineral dust. 
 
 Single scattering albedo (SSA) is defined as the ratio of scattering optical depth to the total 
optical depth and represents the efficiency of the scattering nature of aerosol particles. It is a key 
variable for determining aerosol climatic effects and retrieving AOD from satellite radiances. SSA 
gives information about the chemical composition of aerosols in the atmosphere. An increase of 
SSA with wavelength can be associated with the dominance of coarse-mode desert-dust particles 
in the aerosol-size distribution. 
 
 Phase function is defined as the angle at which the scattered light is distributed as a 
function of size, shape of the aerosol particle, wavelength and incidence angle of the light. 
 
 Asymmetry parameter is defined as the cosine weighted mean of the angular scattering 
phase function. It is the ratio between forward- and backward-scattered radiation. 
 
 A first climatology of optical properties of aerosols over the Arabian Peninsula was provided 
by Smirnov et al. (2002) using AOD measurements over Bahrain acquired through the Aerosol 
Robotic Network (AERONET). A maximum dust aerosol loading was observed during the March–
July period. They found a rather narrow AOD probability distribution with a modal value of about 
0.25. The AE frequency distribution has two peaks. One peak, around 0.7, characterizes a 
situation when dust aerosol is more dominant; the second peak, around 1.2, corresponds to 
relatively dust-free cases. They also found that the correlation between AOD and water-vapour 
content in the total atmospheric column was strong (correlation coefficient of 0.82) when dust 
aerosol was almost absent (AE > 0.7), suggesting possible hygroscopic growth of fine-mode 
particles or source region correlation and much weaker correlation (correlation coefficient of 0.45) 
when dust was present (AE < 0.7). Diurnal variability of AE (20%–25%) was evident during the 
April–May period, when dust dominated the atmospheric optical conditions. Variations in the 
aerosol volume-size distributions are mainly associated with changes in the concentration of the 
coarse aerosol fraction. Geometric mean radii for the fine- and coarse-aerosol fractions are 0.14 m 
(standard deviation = 0.02) and 2.57 m (standard deviation = 0.27), respectively. Concerning SSA, 
they concluded that, in dust-free conditions, it decreased with wavelength, while, in the presence of 
dust, either stayed neutral or increased slightly with wavelength.  
 
 The only intensive campaign of measurements focused on optical properties of aerosols 
and, especially, desert dust in West Asia, was the UAE2 field campaign in 2004. A detailed 
description of the activities and results of this campaign is provided by Reid et al. (2005). It focused 
on the characterization of fundamental physical and optical properties of atmospheric aerosol 
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particles and on the interaction of regional/local meteorology with aerosol radiative impacts. It 
should be taken into account, however, that the results of this campaign, although extremely 
interesting, are representative only of summertime in a small region of West Asia.  
  
 During UAE2 a dense network of Cimel sunphotometers was deployed (Figure 29) on an ad 
hoc basis (Eck et al., 2008) and integrated into AERONET (Holben et al., 1998). It was observed 
that the average diurnal variability of AOD at 500 nm varied between sites (from 0.4 to 0.53), with 
the largest diurnal changes (from values lower than 0.2 to higher than 1) occurring at some coastal 
and island sites (probably associated with land-/sea-breeze circulation). The two-month average of 
AE increased, moving from the desert region: 0.50–0.57 at inland desert sites, 0.64 at coastal sites 
and 0.77 over the Gulf island sites. This indicates that the observed dust particles are, on average, 
close to the source region. Correspondingly, the average fine-mode fraction increased from ~35% 
in the inland desert sites, up to ~48% in the Gulf island sites.  
 
 

 

Figure 29 - Location of AERONET sites in the UAE and southern Gulf during the UAE2 field campaign  
(from Eck et al., 2008) 

 
 
 Basart et al. (2009) provided an atmospheric aerosol characterization for North Africa, 
north-eastern Atlantic, Mediterranean and Middle East, based on the analysis of quality-assured 
direct-sun observations of AERONET, which include at least an annual cycle within the 1994–2007 
period. They provide statistical values of AOD, AE and its spectral curvature (δα = AE (440, 613)–
AE (613, 1003). Kaufman (1993) pointed out that negative values of δα indicate the dominance of 
fine-mode aerosols, while positive differences reflect the effect of two separate particle modes. In 
the Middle East, all sites show high extinctions (AOD up to 3), mainly clustering in the coarse 
mode. These extinctions are lower than those observed at African sites.  
  
 According to Basart et al. (2009), UAE and the Gulf include strong regional desert dust 
sources of predominately coarse-mode-size particles, as well as important fine-mode pollution 
particle sources from petroleum extraction and processing facilities, which are located on islands, 
sea-platforms and coastal regions of the Gulf. Thus, as shown in Figure 30, the coastal sites in the 
north-eastern part of the UAE, such as Mussafi, Dhabi and Dhanah, as well as Bahrain in the Gulf, 
attain positive δα values for most of the year (~0.2), which indicates the co-existence of two 
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particle modes. At the coastal sites of Mussafa, Dhabi, Dhanah and Bahrain, they observed desert 
dust with AOD maxima of 1.5, AE < 0.75 and δα ≥ 0. On the other hand, small particles from 
petroleum-industry emissions are associated with fine mode (AE ∼1.6 and δα ∼–0.2) and AOD < 
0.7. The interaction of mineral dust and pollution is strong at these coastal sites. Conversely, they 
reported that at inland desert sites, such as Hamim and Solar Village, desert dust is the main 
aerosol constituent associated with high AOD (> 0.7 ranging up to > 2), clustering mainly in the 
coarse mode (AE < 0.75 and δα variable). Records at Hamim show a contribution of small particles 
from industrial emissions, probably as a result of the land-breeze circulations in this area (Eck et 
al., 2008), which produce occasional increases of fine-mode particles from offshore petroleum 
operations. In Solar Village, far away from the Gulf or other industrialized areas, the records 
present the highest extinctions (AOD > 1) in the coarse mode (AE < 0.75 and δα < 0.1). This 
station also presents an expanded particle-size range, suggesting significant variations in the 
particle-size distribution, from almost pure coarse-mode dust particles to a mixture of coarse 
particles and fine-mode pollution aerosols. As shown in Figure 30, the contribution of large 
particles is maximal in spring and summer. In spring, all sites present similar AOD and AE values, 
associated with maximum local desert-dust activity (Smirnov et al., 2002).  
 
 

 

Figure 30 - Seasonal mean of measurements with AOD > 0.15 for each AERONET station: the colour code indicates the 
seasonal mean of AOD at 675 nm, the size code is associated with the seasonal mean of AE calculated between 440 and 

870 nm and the blue contour code is associated with the seasonal mean of δα = AE (440, 675)–AE (675, 870) 
 
 
 Kim et al. (2011) used 14 AERONET stations (10 in North Africa and four in the Arabian 
Peninsula) to derive dust optical properties. They selected data with large AOD (≥ 0.4) at 440 nm 
and small AE (AE ≤ 0.2) for assuring pure mineral-dust aerosol characterization, reducing 
interference of non-dust aerosols. They found that the annual mean and standard deviation of 
SSA, asymmetry parameter, real refractive index and imaginary refractive index for Saharan and 
Arabian desert dust was 0.944 ± 0.005, 0.752 ± 0.014, 1.498 ± 0.032 and 0.0024 ± 0.0034 at 550 
nm wavelength, respectively. They also found that, using the above above-mentioned data-
selection criteria, dust aerosol is less absorbing than previously reported values. Maghrabi et al. 
(2011), analysing a strong dust storm over Saudi Arabia, found sharp changes in aerosol optical 
properties before and after the intrusion. They found that AOD at λ = 500 increased by 330% 
immediately after the storm and remained very high: 429%, 144% and 52% for the three 
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subsequent three days after the start of the storm, while AE fell to negative values. Another 
outstanding result was a remarkable decrease in broadband global and direct irradiances on the 
ground: 42% and 68%, respectively, in comparison with the previous clear day. The storm also 
caused an increase in atmospheric emissions in the atmospheric window (8–14 µm); the emissions 
in this window resembled those of a black body and, consequently, the atmospheric window was 
almost closed. 
 
 In the Islamic Republic of Iran, Masoumi et al. (2010) attributed the maximum value of AOD 
and noticeable increase of very coarse aerosols to the transport of dust from the Tigris-Euphrates 
basin. They also found a mixture of urban-industrial and dust aerosols during most of the year, with 
maximum AOD values, when AE values suggested the presence of supermicron aerosols (during 
spring and summer), typical of desert regions, and minimum AOD values when AE showed its 
largest values (December and January), indicative of an atmosphere mostly loaded with fine and 
very fine aerosols as a result of a mixture of urban-industrial dust with that transported from the 
Tigris-Euphrates basin and Qom Lake to Zanjan (Masoumi et al., 2010).  
 
 Using measurements from AERONET at the IMS-METU site at Erdemli (36°33'N, 34°15'E) 
on the north-eastern Mediterranean Turkish coast, Kubilay et al. (2003) characterized the 
predominant regional aerosol optical properties, with an emphasis on mineral-dust intrusions. As 
explained in previous sections, dust storms affecting Turkey originate primarily from the central 
Sahara in spring, the eastern Sahara in summer and the Middle East/Arabian peninsula in autumn. 
According to the authors, the dust episodes were characterized by: (a) a sharp drop in the 
Ångström coefficient to values near zero; (b) high-scattering with SSA greater than 0.95 ± 0.03 and 
the real part of the refractive index around 1.5 ± 0.5; (c) lower absorption given by the imaginary 
part of the refractive index less than 0.002; and (d) almost-neutral spectral dependence of these 
parameters. 
 
 
A.2.5  Vertical structure of the dust layer 
 There is little information about the vertical structure of the dust layer in West Asia. The only 
intensive campaign of measurements with lidar was held during the UAE2 field campaign. This 
campaign incorporated remote-sensing measurements of heterogeneous aerosol properties over 
water and bright desert surfaces.  
 
 The Micropulse Lidar Network (MPLNET) is a federated network of single-channel 
(523 nm), autonomous, eye-safe, micropulse lidar systems, designed to measure aerosol and 
cloud vertical structure (Welton et al., 2001). During UAE2, MPL systems were deployed at the Al 
Ain international airport (SMART site) and a site on the coast, north of Abu Dhabi City (MAARCO 
site) (Spinhirne et al., 1995). Datasets and more information on MPLNET are available on the 
MPLNET-National Aeronautics and Space Administration (NASA) website 
(http://mplnet.gsfc.nasa.gov). Raw MPL data were acquired at a one-minute time resolution, and 
75 m vertical resolution. The raw data were converted into signals to infer the altitude of aerosol 
and cloud heights (Welton and Campbell, 2002).  
 
 Aerosols were present from the surface to 5–6 km at both UAE2 sites during the 
experiment. Figure 31 shows a dust layer between 1 km and almost 6 km above ground. The top 
of the aerosol layer is visible as the purple and pale blue-green layer bordering the free 
troposphere. Some middle clouds, probably altocumulus (around 5 km altitude), are observed at 
the top of the dust layer. Some cirrus clouds are also observed between 0 km and 12 km altitude. 
White indicates periods of intense apparent backscatter due to temperature fluctuations in the 
trailers (Reid et al., 2005). 
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Figure 31 - Example of MPL normalized relative backscatter during UAE2 (after Reid et al., 2005) 
 
  
 A permanent lidar station located at a strategic site in West Asia is Zanjan (36.7°N, 48.5°E, 
1 700 m asl), a city located in the Iranian north-west (Figure 32, left). At present, the lidar is 
operated at a single wavelength and no polarization (Khalesifard et al., 2004, 2005). Its main 
objectives are environmental issues (Bidokhti et al., 2008) and atmospheric radiative budget, since 
the Zanjan region is subject to frequent dust storms.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32 - Position of lidar in Zanjan (Islamic Republic of Iran) (left) and an example of vertical aerosol-layer structure 
monitoring at Zanjan (right), with an increase of mixed-layer height after sunrise reaching a maximum value between 05:00 

and 11:00 UTC (after Bidokhti et al., 2008) 
 
 
 This lidar station permitted, for example, assessment of the impact of dynamic processes 
leading to dust emission over the Syrian Arab Republic and Iraq and north-western Islamic 
Republic of Iran, in response to a strong winter shamal (Abdi Vishkaee et al., 2012). Using ground-
based lidar measurements acquired in Zanjan, this paper showed that, in the wake of the front, 
dust from Syrian Arab Republic/Iraq was transported in an elevated 1–1.5 km thick plume 
separated from the surface during the night/morning (Figure 32, right). After sunrise and strong 
turbulence in the developing convective boundary layer, dust was mixed into the boundary layer, 
leading to a sharp reduction in horizontal visibility. 
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 The vertical distribution of the dust layer during Saharan-dust outbreaks in Turkey is, 
probably, quite similar to the vertical structure found over Greece by Papayannis et al. (2009). 
They performed systematic observations of the vertical aerosol with a multi-wavelength (355-532-
1 064-387-607 nm) Raman lidar system of the National Technical University of Athens operated in 
Athens. They found multiple aerosol dust layers of variable thickness (680–4 800 m), with a centre 
of mass of these layers in altitudes between 1 600 m and 5 800 m. The mean thickness of the dust 
layer typically stayed around 2 700 m, however, and the corresponding mean centre of mass was 
of the order of 2 900 m. The top of the dust layer ranged from 2 000 m to 8 000 m, with a mean 
value of the order of 4 700 m.  
 
 Given the scarcity of in situ lidar measurements in West Asia, the information provided by 
the new-generation lidars aboard satellites is extremely useful. The primary instrument aboard the 
Cloud-Aerosol Lidar and Infra-red Pathfinder Satellite Observations (CALIPSO) satellite is the 
Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) sensor, which is designed to acquire 
vertical profiles of elastic backscatter at two wavelengths (1 064 nm and 532 nm) from a near-
nadir-viewing geometry during both day and night phases of the orbit (Winker et al., 2007). 
CALIOP also provides profiles of linear depolarization ratios at 532 nm. The depolarization 
measurements enable identification of non-spherical aerosol particles such as dust (Omar et al., 
2009). 
 
 Liu et al. (2008) provide the most 
representative features of the vertical structure 
of the dust layer in West Asia by using the first 
year of CALIPSO measurements under cloud-
free conditions. They provided zonal and 
meridional mean vertical structures of dust 
aerosols over the Arabian Peninsula (Figure 
33). The mean dust-layer top is close to 5 km 
during the summer and below 3 km during the 
winter. As shown in Figure 33, intense dust 
plumes can be lifted up to 6 km during the 
winter. It is well known that dust generated over 
the Arabian Peninsula can be transported to 
the Gulf and the Arabian Sea (Husar et al., 
1997; Herman et al., 1997). According to Liu et 
al. (2008), dust aerosols are mainly transported 
above 1 km during summer and autumn, while 
significant dust aerosols are transported below 
1 km during the spring, which may be due to 
the local monsoon circulation. 
 
 
 
 
 
 
 
 
 

Figure 33 - The zonal (a) and meridional (b) mean vertical 
distributions of dust vertical occurrence, obtained by 

CALIPSO observations in the period June 2006–May 2007 
over the Arabian Peninsula for the four seasons, 

respectively: the mean dust-layer top and surface altitudes 
are overplotted in the dust-layer occurrence as thick solid 

lines and thin solid lines, respectively (after Liu et al., 2008) 
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A.2.6 Dust climatology in West Asia 
 The previous sections have shown that there is insufficient information to obtain a full 
picture of atmospheric dust distribution over West Asia. It was, therefore, decided to include this 
section, in which a monthly climatology of atmospheric dust has been obtained from the most 
reliable satellite sensors, global and regional dust models and ground-based observations from 
AERONET. This study is not intended as a detailed analysis that would go far beyond the scope of 
this report, but as a first approach to identifying and understanding the distribution of atmospheric 
dust over the region and to confirm the potential dust sources and pathways reported in previous 
studies. This section will serve as a basis for identifying gaps in dust monitoring and modelling in 
West Asia. The information will be used later for recommending observation and modelling 
strategies. 
 
A.2.6.1 Experimental approaches to identifying and understanding atmospheric dust  
 distribution 
 
 Data from the following sensors and models were analysed:  
 
1. The MISR instrument, on board the NASA Earth Observing System’s Terra satellite 
(http://www-misr.jpl.nasa.gov/). The four MISR bands (blue, green, red and near-infra-red) take a 
global coverage every nine days with repeat coverage, depending on latitude, between two and 
nine days. This analysis comprises data from the period 2003–2010 (eight years).  
 
 MISR products downloaded from the NASA Giovanni (Goddard Earth Sciences Data and 
Information Services Center (GES DISC) interactive online visualization and analysis 
infrastructure) server (http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html) were: 
 
• Daily AOD at 555 nm 
• Monthly AOD at 555 nm 
 
 Data were plotted using the World Geodetic System WGS84. The four nearest pixels with a 
17.6 × 17.6 km spatial resolution were used to extract MISR data over a specific station. MISR can 
retrieve aerosol properties over bright desert areas thanks to its unique capability of multi-
wavelength observations in forward and backward directions (Kahn el al., 2005). 
 
2. MODIS aboard the Terra (EOS AM) and Aqua (EOS PM) satellites 
(http://modis.gsfc.nasa.gov). Terra’s orbit around the Earth is timed so that it passes north-south 
across the Equator in the morning, while Aqua passes south-north over the Equator in the 
afternoon. Terra MODIS and Aqua MODIS view the entire Earth’s surface every one to two days, 
acquiring data in 36 spectral bands or groups of wavelengths. The MODIS aerosol algorithm 
comprises two independent algorithms, one for deriving aerosols over land and the second over 
ocean (Levy et al., 2003; Remer et al., 2005). An algorithm over land has been developed for use 
at low ground reflectance only (i.e. over dark vegetation). For this reason, the MODIS/Aqua-DB 
AOD product has been included in the analysis. It employs radiances from blue channels for which 
the surface reflectance is low enough that the presence of dust brightens the total reflectance and 
enhances the spectral contrast (Hsu et al., 2004). Thus, the MODIS/Aqua-DB AOD product 
basically provides information over arid and semi-arid areas.  
 
The following datasets were used: 
 
• MODIS Terra version V5.1 (daily: MOD08_D3.051/monthly: MYD08_M3.051) with 1˚ x 1˚ 

resolution for the period 2003–2010 
• MODIS Aqua version V5.1 (daily: MOD08_D3.051/monthly: MYD08_M3.051) with 1˚ x 1˚ 

resolution for the period 2003–2010 
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The MODIS products downloaded from the NASA Giovanni server  
(http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html) were: 
 
• Daily and monthly averaged AOD at 550 nm over ground with DB algorithm 
• Daily and monthly averaged AOD at 550 nm over the ocean with no DB algorithm 

 
 Data were plotted using WGS 84. The four nearest pixels were used to extract MODIS data 
over a specific station. 
 
3. AERONET consists of sun- and sky-scanning spectral photometers that automatically 
measure the intensity of sunlight and directional sky brightness from the UV (340 nm) to the near-
infra-red (1 640 nm) in nine spectral band passes throughout the day. These data are relayed by 
satellite or FTP connection to NASA’s Goddard Space Flight Centre (GSFC) or through PHOTONS 
(photométrie pour le traitement opérationnel de normalisation satellitaire), where they are 
processed in near-real-time (NRT) to retrieve AOD, particle-size distribution and complex index of 
refraction data available through the public access website: http://aeronet.gsfc.nasa.gov. 
AERONET is a federation of ground-based remote-sensing aerosol networks established by NASA 
and PHOTONS (University of Lille, the French National Centre for Space Studies (CNES) and the 
French National Centre for Scientific Research (CNRS) National Institute for Earth Sciences and 
Astronomy and is greatly enhanced by the participation of collaborators from national agencies, 
institutes, universities, individual scientists and partners. 

 
 In this study, AERONET stations operating within the West Asia geographical domain were 
used (see Figure 34).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34 - Map of AERONET stations in West Asia: Bahrain and Abu Dhabi stations are circled 
 
 

 Only AERONET level 2.0 data were included in the analysis. The AERONET products used 
in this section were:  
 
• AOD at 550 nm derived from the classical Ångström equation (AOD (λ) ∼λ-α) (Ångström, 

1929) and Ångström exponent (α) 470-865 nm 
• Ångström exponent (α or AE) 
• Coarse mode at 500 nm obtained with spectral deconvolution algorithm (SDA) (O’Neill et 

al., 2003, 2005) 



	  
37	  

• Fine mode at 500 nm with SDA 
 

4. MACC-ECMWF dust model (Benedetti et al., 2008; Morcrette et al., 2008) from the 
European Centre for Medium-Range Weather Forecasts (ECMWF).  

 
 For station characterization, MACC-f93i experiment reanalysis (Benedetti et al., 2008) was 
used at 06:00, 12:00 and 18:00 UTC each day and the following variables were extracted: 
 
• DOD at 550 nm 
• AOD at 550 nm 

 
 For climatic maps, monthly mean maps were obtained from daily averages computed from 
MACC outputs at 06:00, 12:00 and 18:00 UTC for the period January 2003 to March 2010. The 
maps obtained correspond to: 
 
• DOD at 550 nm monthly means for the period 2003–2010 
• AOD at 550 nm monthly means for the period 2003–2010 

 
5. NMMB/BSC-Dust model (Pérez et al., 2011; Haustein et al., 2012) from Barcelona 
Supercomputing Centre (BSC). 

 
 For station characterization, NMMB/BSC-Dust reanalysis was used at 06:00, 12:00 and 
18:00 UTC each day and the following variables were extracted: 
 
• DOD at 550 nm 
• Dust concentration at 10 m above ground (µg/m3) 

 
 For climatic maps, the monthly mean maps were obtained from daily averages computed 
from NMMB/BSC-Dust outputs at 06:00, 12:00 and 18:00 UTC for the period January 2003 to 
March 2010. The maps obtained correspond to: 
 
• DOD at 550 nm monthly means for the period 2003–2010 
• Dust concentration at 10 m above ground monthly means for the period 2003–2010 

 
 A detailed description of MACC-ECMWF and NMMB/BSC-Dust models can be found at 
http://sds-was.aemet.es/forecast-products/dust-forecasts. 
 

 Trend analysis of AOD from MISR and Enhanced Vegetation Index (EVI) from MODIS has 
been performed using the Giovanni online data system (Acker and Leptoukh, 2007). 

 
A.2.6.2  AOD from MISR 
 AOD monthly mean value from MISR for July (2003–2009) is shown in Figure 35. AOD ≥ 
0.5 is plotted in yellow to red. 
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Figure 35 - Monthly mean AOD for July (2003–2009) obtained from the MISR satellite sensor 
 
  
 
 Monthly AOD averages from MISR for each month during the period 2003–2010 are 
depicted in Figure 36. January and February show low AOD. In March, moderate AOD ~0.5 is 
observed over Saudi Arabia, affecting Qatar and Bahrain and part of the Gulf Sea. AOD intensifies 
over Saudi Arabia and the Gulf Sea in April, with moderate AOD observed over part of Iraq, the 
Red Sea and central Islamic Republic of Iran. A similar pattern, but with higher and moderate AOD, 
is also observed over UAE and the eastern border of Islamic Republic of Iran. In June, the AOD 
pattern is similar to May but with increased AOD over some areas, mainly over the Arabian Sea 
and the southern half of the Red Sea. July is the month with the highest AOD. All the regions with 
moderate and high AOD observed in June show higher AOD in July. The Iranian coast of the 
Arabian Sea shows high values of AOD and areas with moderate levels of AOD in central Islamic 
Republic of Iran shift northward during this month. The southern Red Sea, the Gulf and much of 
the Arabian Sea have very high monthly averaged values of AOD (> 0.7).  
 
 In August, AOD values begin to decrease. This decline is significant in Saudi Arabia, Iraq 
and UAE, with very high values still in the northern Arabian Sea and the southern Red Sea. In 
September, AOD values decrease significantly in all regions, being low in October, November and 
December, although some low-to-moderate AOD values are observed over Saudi Arabia, the Red 
Sea and southern Iraq in October. 
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Figure 36 - Monthly mean AOD from MISR for the period 2003–2010 
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A.2.6.3 AOD from MODIS-Deep Blue 
 Monthly mean AOD from MODIS-DB (2003–2010) for July is shown in Figure 37. AOD ≥0.5 
is plotted in yellow to red. 
 

 

Figure 37 - Monthly mean AOD for July (2003–2009) obtained from MODIS-DB 
 

 
 MODIS-DB (Figure 38) and MISR show basically the same monthly AOD patterns over 
West Asia but there are some differences. For example, MODIS-DB highlights moderate AOD over 
Iraq and the Gulf in February. In March, April, May and June, the difference between MISR and 
MODIS-DB persists, with higher values shown by MODIS-DB in Iraq, Syrian Arab Republic and the 
Gulf. However, AOD over Saudi Arabia given by MODIS-DB is significantly lower than that shown 
by MISR. Higher AOD is also observed with MODIS-DB in the Iranian Sistan region. In July and 
August, the same differences between MISR and MODIS-DB are found, but AOD underestimation 
of the latter over Saudi Arabia, Oman and UAE is really striking. From September to December, 
under relatively high AOD values in the region, the most outstanding differences are found over the 
Arabian Peninsula (with higher AOD values from MISR) and over the Gulf (with higher AOD values 
from MODIS-DB). Shi et al. (2011) identify regions where MODIS/MISR AOD ratios were above 
1.4 and below 0.7. These regions, where uncertain lower boundary conditions are likely to be a 
dominant factor, include portions of the Arabian Peninsula and Central Asia. 
 
 A number of reasons that might explain the differences between MISR and MODIS-DB 
have been investigated by several authors (Xiao et al., 2009; Shi et al., 2011). 
 
 Firstly, MODIS-DB retrievals normally underestimate high reflectance surfaces. This might 
be applied to most of the Arabian Peninsula, where MODIS-DB provides lower AOD than MISR. 
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Figure 38 - Monthly means AOD from MODIS-DB for the period 2003–2010 
 
 
 From the comparison between MISR and MODIS-DB with an AERONET observation site at 
Solar Village, Saudi Arabia, performed by Shi et al. (2011), there is better agreement between 
AERONET/MISR than AERONET/MODIS-DB. Over desert regions such as North Africa and the 
Middle East, AOD values from the two products have differences around 0.1 to 0.3 (Shi et al., 
2011). One of the regions of the world where MISR retrievals are much greater than those from 
MODIS-DB is the Arabian Peninsula (Shi et al., 2011). 
 
 Secondly, in the complicated aerosol content we find in regions such as the east coast of 
the Gulf and Islamic Republic of Iran, there is a mixture of dust and anthropogenic aerosol plumes 
emitted from oil- and gas-combustion industries. While this introduces an element of uncertainty, 
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there are other inherent causes in the satellite-sensor technique and algorithm issues for one or 
both instruments.  
 
 Furthermore, and from a climatological point of view, we have to take into account the fact 
that, while MODIS-DB completes a global coverage every one or two days, MISR has a global 
coverage every nine days. This means that AOD climatologies correspond to a quite different 
number of days, during which dust episodes might vary significantly. 
 
 These differences must be analysed and understood, using ground-based measurements 
as carried out by AERONET. As suggested by Shi et al. (2011), additional AERONET sites are 
required for some of the regions with large MODIS/MISR ratio values, especially where it is 
suspected that aerosol optical property assumptions cause large uncertainties in satellite retrievals. 
This is the case in most of the Middle East. The NRT comparison of satellite- and ground-based 
measurements constitutes a good quality-assurance system, which will give a confidence level to 
the data provided by satellite and correct them, if necessary. 
 
A.2.6.4 Dust climatology from AERONET stations 
  The mixture of aerosols found in West Asia can be derived from AERONET stations. We 
have included in this study a climatology of AOD: coarse-mode AOD (which corresponds mostly to 
mineral dust) and fine-mode AOD (which corresponds mostly to industrially derived particles). 
Although this study has been completed for all AERONET stations in West Asia with at least one 
year of Data Level 2.0 AERONET and, for sake of brevity, only Metu (Turkey), Kuwait, Bahrain, 
Dhabi (UAE), Mussafa (UAE) and Solar Village (Saudi Arabia) are presented in this report. 
 
 The joint analysis of monthly mean values of the total AOD and corresponding coarse and 
fine AOD fractions gives us an interesting picture of the seasonal variation of aerosols, including 
dust, in different areas of West Asia.  
 
 The box-plots in Figures 40, 41 and 42 indicate the following: the bottom and top of the box 
are the AOD 25th and 75th percentile; the band near the middle of the box is the 50th percentile 
(the median); and the red triangle expresses the AOD mean value. The ends of the whiskers 
represent the one standard deviation above and below the mean of the AOD data. Any data not 
included between the whiskers are plotted as an outlier with a dot.  
 
 There are significant differences between AERONET stations, even between those located 
relatively near each other. For example, when comparing the data at Bahrain and Kuwait stations, 
the latter presents much higher AOD values. The seasonal variation is also quite different. In 
Bahrain, AOD from anthropogenic aerosols (fine AOD) plays a key role annually from July to 
December with fine-AOD ≥ 0.2, while, in Kuwait, AOD is basically driven by dust (coarse AOD). 
Kuwait is also affected by fine particles, but to a much lesser extent. In Bahrain, coarse AOD 
outliers are observed throughout the year, but mainly in spring and summer, indicating moderate-
to-severe dust storms. In Kuwait, the coarse AOD outliers are observed mainly in winter (a 
significant difference between the AOD mean and the AOD median). In Mussafa and Abu-Dhabi 
AERONET stations (both in UAE), the seasonal variation is quite different, peaking in July and 
August. Although the distance between them is small, there are some significant differences 
between them. 
 
 The influence of particles from industrial processes (fine AOD) is important at both UAE 
stations from July to December, where some severe pollution events in terms of fine AOD were 
recorded. Maximum total AOD is found in July–August at both stations. In Abu Dhabi, the 
maximum coarse AOD values (July and August) coincide with maximum fine AOD values. A 
mixture of mineral dust and anthropogenic aerosols is therefore observed in summertime. Solar 
Village is a key AERONET station in the heart of Saudi Arabia. It presents large total AOD values, 
although lower than those found in Kuwait. The incidence of fine particles is much lower than in 
stations located near the Gulf, with a peak of fine AOD in August (< 0.2). The seasonal variation of 
both total and coarse AOD is quite different from Gulf stations, peaking in May. Coarse AOD 
outliers occur over the year, caused by dust storms or small-scale convective dust events, and 
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some are related to local dust re-suspension. The IMS-MET-ERDEMLI station, on the southern 
coast of Turkey, presents much lower total AOD and coarse AOD values than the stations in the 
Gulf region. However, the fine AOD values are quite large – even higher than coarse AOD levels – 
and much higher than monthly mean values observed at Gulf stations. Coarse AOD peaks in April 
(< 0.2), while a broad total AOD maximum is observed from June to August (~0.5), which is clearly 
driven by fine particles with a similar seasonal variation, peaking in summer (~0.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 39 - Seasonal variation of aerosols at Bahrain and Kuwait AERONET stations 
	  
	  



	  
44	  

	  
 

Figure 40 - Seasonal variation of aerosols at Mussafa and Abu Dhabi AERONET stations (UAE) 
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Figure 41 - Seasonal variation of aerosols at Solar Village (Saudi Arabia) and IMS-METU-ERDEMLI (Turkey)  

AERONET stations 
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A.2.6.5 Comparison of dust climatologies from AERONET and dust models 
  Dust climatology performed with information from a small number of AERONET stations in 
West Asia is limited. Although climatology of AOD from satellite-borne sensors has been previously 
presented, climatology from the model simulations using MACC-ECMWF and NMMB/BSC-Dust 
reanalysis is included in this section. A couple of examples of the behaviour of these models are 
presented and compared with AERONET stations. The model-validation exercise was done at 
each AERONET station in the region but, because of space limitations, only the results for two key 
stations located in the Gulf area are presented here – Bahrain and Abu Dhabi – where great 
complexity in the transport of dust is observed.  
 
 To validate the AOD climatologies between models (MACC-ECMWF and NMMB/BSC-
Dust) and AERONET data level 2.0, statistics were obtained from monthly mean, daily averaged 
measurements matching between models and each AERONET station. Months with at least 
15 days matching between models and AERONET were selected. The computed monthly statistics 
are the following: 
 
• Mean bias (MB) 
• Modified normalized mean bias 
• Root mean squared error 
• Correlation coefficient 
 
 For the sake of brevity, only MB has been shown.  
 
 In the comparison of dust models with AERONET stations, the average of the four nearest 
pixels to the station was used. Concerning the model resolution of the models, 1° for MACC-ECMF 
and 0.5° in the case of NMMB/BSC-Dust, small-scale processes or local dust resuspension cannot 
logically be captured by models. Despite these limitations, the results were generally excellent for 
both models, showing their ability to simulate AOD in West Asia. 
 
 NMMB/BSC-Dust is designed to simulate only dust (DOD in this case) but MACC-ECMWF 
can simulate total AOD and AOD contributions from different aerosols, including dust (DOD). When 
comparing AOD climatologies of AERONET stations and MACC-ECMWF (Figures 43 and 44(a) 
and (b)), there is fairly good agreement for Bahrain and Abu Dhabi stations. The month-to-month 
variability is well captured by MACC. Logically, there are slight quantitative differences. 
 
 Concerning DOD, both models agree quite well with the seasonal variation shown by the 
AERONET stations. Monthly averaged MB values of both models are normally within ± 0.15 AOD. 
The behaviour of the models varies depending on time of year and the subregion simulated. We 
cannot speak of a better behaviour of any of the models: not one model stands out as performing 
better than the others. Normally, each one performs best in a given area and given season/month. 
The best definitive option, if possible, is to use an ensemble of models for both dust forecasting 
and dust climatology from reanalysis. 
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Figure 42 - (a) monthly mean values of total AOD AERONET level 2.0 at Bahrain station for the period 2004–2006;  

(b) monthly mean values of total AOD simulated with MACC-ECMWF using coincident days with the AERONET station;  
(c) coarse AOD computed with AERONET level 2.0 data at Bahrain station using SDA (O’Neill et al., 2003; 2005); (d) monthly 

averaged MB of DOD for MACC-ECMWF and NMMB/BSC-Dust simulations when compared against coarse AOD from 
AERONET; (e) monthly mean DOD from MACC-ECMWF for coincident days with AERONET during the period 2004–2006;  

(f) monthly mean DOD from NMMB/BSC-Dust for coincident days with AERONET during the period 2004–2006 
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Figure 43 - (a) monthly mean values of total AOD AERONET level 2.0 at Abu Dhabi station for the period 2004–2006;  

(b) monthly mean values of total AOD simulated with MACC-ECMWF using coincident days with the AERONET station;  
(c) coarse AOD computed with AERONET level 2.0 data at Abu Dhabi station using SDA (O’Neill et al., 2003; 2005);  

(d) monthly averaged MB of DOD for MACC-ECMWF and NMMB/BSC-Dust simulations when compared with coarse AOD 
from AERONET; (e) monthly mean DOD from MACC-ECMWF for coincident days with AERONET during the period  

2004–2006 at Abu Dhabi; (f) monthly mean DOD from NMMB/BSC-Dust for coincident days with AERONET 
 during the period 2004–2006 at Abu Dhabi 
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A.2.6.6 Comparison of dust climatologies from AERONET, MACC-EMWF and satellite-based 
  sensors 
  In order to show how well MACC reproduces AOD monthly climatology, it was compared 
with AOD climatology computed from MODIS and MISR-DB AOD for Bahrain station, by choosing 
those days when AOD was available from the three systems (AERONET/MACC-ECMWF/MODIS-
DB and AERONET/MACC-ECMWF/MODIS-DB) (see Figure 44). A first conclusion, apart from the 
comparison of the systems, is that the climatology is greatly dependent on the days chosen to build 
it. The climatology in the left panel clearly differs from the climatology in the right panel. In general, 
as a monthly average, it is important to have the highest number of days with observations and/or 
simulations. This poses a problem in the case of AERONET and satellite sensors with clouds at 
some sites. 
 
 

Figure 44 - Left panel: monthly mean total AOD for Bahrain AERONET station (top), monthly mean total AOD from MACC-
ECMWF model interpolated for Bahrain (middle) and total AOD from MODIS-DB model interpolated for Bahrain (bottom). 

Note that, for the monthly climatology, only matching days in all three systems have been computed. Right panel: the same 
as left panel, but for AERONET, MACC and MISR. Note that both climatologies (left and right panels) do not coincide, since 
the days selected to produce them are very different. For example, MISR has data on the AERONET station every nine days 
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 From Figure 44, it can be seen that MACC agrees quite well with AERONET, better than 
MODIS-DB and similar to MISR. In the case of inland stations well inside the desert, as, for 
example Solar Village, the agreement between AERONET and MACC-ECMWF is much better 
than the agreement found between AERONET and MODIS-DB (not shown here). 
 
A.2.6.7 Climatology of AOD from MACC-ECMWF 
 Interesting conclusions can be obtained from the comparison of the monthly climatology of 
total AOD with the monthly climatology of the number of days with AOD higher than 0.5 (see 
Figure 45 as zoomed-out example corresponding to May). In Figures 47 and 48, the monthly maps 
of total AOD simulated with MACC-ECMWF are compared with the monthly maps of the number of 
days with total AOD > 0.5 from MACC-ECMWF. First monthly maps have been obtained from the 
daily averaged data computed from model-reanalysis outputs at 06:00, 12:00 and 18:00 UTC for 
the period January 2003–March 2010.  
 

 
 

 
Figure 45 - Total AOD from MACC-ECMWF (top) and the number of days with AOD > 0.5 (bottom)  

for May during the period 2003–2010 
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 While total AOD maps provide information about the intensity of aerosols, the number of 
days with AOD > 0.5 gives us information about the persistence of high AOD values. This 
combined information shows the regions most impacted by dust and other aerosols in West Asia 
(Figures 47 and 48). 
 
 In January and February, southern Saudi Arabia, the eastern part of the Arabian Peninsula 
and a north-west to south-east corridor covering Iraq and the Gulf Sea, as well the Iranian Sistan 
region, show some AOD signal in intensity and persistence that increases slightly in February.  
 
 In March, the areas are the same but with intensified AOD values and persistence.  
 
 In April, higher AOD over the aforementioned zones is observed and a new area becomes 
important in central Islamic Republic of Iran, following a north-west to south-east axis.  
 
 In May, the situation in the Sistan region and central Islamic Republic of Iran intensifies. 
The south-west coast of Saudi Arabia and southern Red Sea, which showed light-to-moderate 
AOD in the previous months of winter, shows significant intensification. 
 
  In June, Oman and Yemen, where low AOD persisted, compared with the moderate AOD 
over Saudi Arabia, the AOD signal and its persistence intensify significantly. The Tokar Gap region 
in north-eastern Sudan activates dust being carried into the Red Sea. AOD intensifies over 
southern Islamic Republic of Iran, being quite visible with a moderate-to-high north–south axis 
corridor. Dust sources in the south-eastern Islamic Republic of Iran/Pakistan region contribute to 
the high dust observed over the northern Arabian Sea.  
 
 In July, AOD maximizes in the majority of regions. The Arabian Sea presents high and 
persistent AOD, as well as the Gulf and the Red Sea. High AOD in central Islamic Republic of Iran 
is also visible. All the Gulf countries record the maximum AOD, as does Yemen. 
 
 In August, both the intensity of AOD and its persistence start to decrease in all regions, 
except in the southern Red Sea and the border region of UAE, Oman and Saudi Arabia. The AOD 
signal in the Tigris-Euphrates basin (Iraq), mainly affecting Kuwait, is also important.  
 
 In September, AOD and its persistence reduce significantly but the regions with moderate-
to-high AOD observed in August still show significant AOD and persistence but at a lesser 
intensity.  
 
 In October, AOD becomes low in most regions and only the Sistan region and Iraq still 
show moderate AOD and persistence.  
 
 In November, some AOD signal is observed in Iraq.  
 
 In December, the AOD values are quite low in all parts of West Asia. 
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Figure 46 - Total AOD from MACC-ECMWF (left panel) and the number of days with AOD > 0.5 (right panel)  

from January to June during the period 2003–2010 
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Figure 47 - Total AOD from MACC-ECMWF (left panel) and the number of days with AOD > 0.5 (right panel)  
from July to December during the period 2003–2010 
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A.2.6.8 Trend analysis at dust hotspots 
 This section offers a preliminary analysis of trends in AOD over those regions identified as 
dust hotspots. This is not a rigorous analysis but a first approach to providing useful information 
when making recommendations on observation networks (Part B of this report). 
 
 The following important dust hotspots and neighbouring dust pathways have been 
analysed: 
 
• Tokar Gap (Sudan): 18°–21°N/35°–40°E 
• Empty Quarter (Saudi Arabia): 19°–24°N/44°–51°E 
• Mesopotamia (Iraq): 31°–37°N/42°–45°E 
• Central Islamic Republic of Iran: 34°–36°N/50°–55°E 
• Central-western Afghanistan: 30°–32°N/61°–66°E 
 
 
Region 1 - Tokar Gap (Figure 48) 
 
 
 

 
Figure 48 - Monthly mean AOD at 555 nm from MISR for Region 1 (Tokar Gap) averaged from  

February 2000 to February 2013 
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Region 2 - Empty Quarter, Saudi Arabia (Figure 49) 
 
 

 
Figure 49 - Monthly mean AOD at 555 nm from MISR for Region 2 (Empty-Quarter, Saudi Arabia) averaged  

from February 2000 to February 2013 
 
 
Region 3 - Mesopotamia, Iraq (Figure 50) 
 
 

 
Figure 50 - Monthly mean AOD at 555 nm from MISR for Region 3 (Mesopotamia) averaged  

from February 2000 to February 2013 
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Region 4 - Central Islamic Republic of Iran (Figure 51) 
 

 
Figure 51 - Monthly mean AOD at 555 nm from MISR for Region 4 (central Islamic Republic of Iran) averaged  

from February 2000 to February 2013 
 
 
Region 5 - Central-western Afghanistan (Figure 52) 
 

 
Figure 52 - Monthly mean AOD at 555 nm from MISR for Region 5 (central-western Afghanistan) averaged  

from February 2000 to February 2013 
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 Although these plots constitute an initial and simple approach to dust trend, there are some 
interesting results. No significant trends are observed in Region 1 (Tokar Gap), Region 4 (central 
Islamic Republic of Iran) or Region 5 (central-western Afghanistan). Even in the latter, a non-
statistically significant negative trend is observed. In Region 2 (Empty-Quarter, Saudi Arabia) and 
Region 3 (Mesopotamian, Iraq), however, a clear, positive AOD trend is observed from MISR. The 
trend seems to occur only in spring (April–June) in Region 3 while, in Region 2, the positive trend 
is observed in spring and summer.  
 
 The positive trend found over Iraq might be linked to the increase in the number of dust 
sources in the last decade found by Keramat et al. (2011) in the Syrian Arab Republic and Iraq. In 
order to check this trend, at a first approximation, EVI averaged over Region 3 was plotted (Figure 
53). EVI is a measurement of the “greenness” of the Earth’s land surface, with increasing 
greenness indicating increased ground cover by growing vegetation. A clear negative trend is 
observed for the available period 2002–2013 over Mesopotamia, mainly affecting spring values. 
The positive trend in AOD values in Region 3 might therefore be a result of land degradation, 
probably due to reduced water availability and land-use changes. 
 
 

 
Figure 53 - Monthly mean EVI from MODIS for Region 3 (Mesopotamia, Iraq) averaged  

from February 2002 to February 2013 
 

 
 
 Concerning Region 2, a similar EVI plot is shown in Figure 54, where a negative trend in 
the EVI is again found, although values are much lower than for Mesopotamia. 
 
 Trend analysis of wind speed at 1 000 hPa (not shown here) over Region 2 for 2000–2011 
between May and August does not show a trend. Further accurate trend analysis is needed to 
assess the observed changes (see Section B.2). 
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Figure 54 - Monthly EVI from MODIS for Region 2 (Empty Quarter, Saudi Arabia) averaged  

from February 2002 to February 2013 
 
 
A.2.7 Summary of dust sources and dust storms by country 
 In this section, main dust sources and dust storm impacts are summarized by country, 
using information obtained in the literature and the dust climatology elaborated for this report 
(Section A.2.6). 
 
Saudi Arabia 
 Saudi Arabia has many dust sources, some of which are geographically large. Dust activity 
is visible over most of the Arabian Peninsula throughout the year but is especially strong from 
March to July and low in winter. 
 
In the north-west: 
• The region lying within a southern extension of the Jordan/Syrian desert known as the high 

desert of An Nafud or the Great Nafud (Bukhari, 1993): this region provides multiple point 
dust sources affecting Saudi Arabia. 

• The highlands north and south of Medina: after a frontal passage, dust travels to the south-
east or south. Pre-frontal dust tends to blow to the north-east or east. Dust storms resulting 
in shear lines are normally confined to the highlands but sometimes blow west into the 
north-eastern Red Sea. 

 
In the north-east: 
• Tigris-Euphrates basin (Iraq) and part of the Syrian Arab Republic. 
 
In central parts: 
• The region known as the Ad-Dahna Desert, the central division of the Arabian Desert: a 

corridor of sandy terrain forming a bow-like shape that connects the An-Nafud Desert in the 
north to the Rub’ al-Khali Desert in the south. Oriented north-west to south-east, it favours a 
continuous supply of dust south-east across the Arabian Peninsula. 

 
In the Red Sea area: 
• The Tokar Gap in north-eastern Sudan, near the Red Sea: in summer, the dust blows into 

the Red Sea for several days, enveloping the region from Tokar to the Gulf of Aden in a 
hazy/dusty atmosphere. 
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In the south:  
• The Rub’ al Khali is the largest sand desert in the world, and one of the hottest and most 

arid locations in Saudi Arabia, encompassing most of the southern third of the Arabian 
Peninsula and areas of Oman, the UAE and Yemen. 	  

• The eastern slopes and the foot of the Sarawat Mountains of Yemen. 
 
United Arab Emirates 
• Tigris-Euphrates basin (Iraq). 
• The Rub' al Khali Desert in western UAE. 
• The Ad Dahna Desert (Saudi Arabia), oriented north-west to south-east, favours a 

continuous supply of dust south-east over the Gulf and the UAE. 
• The eastern slopes and the foot of the Sarawat Mountains of Yemen. 
 
Oman 
• Tigris-Euphrates basin (Iraq). 
• Intense and well-defined sources in Oman (Prospero et al., 2002) are active all year long, 

although the highest activity is in June and July and the weakest from November to 
February. The dust area is well delineated by the 200-m contour, mainly affecting Oman. 

• The region on the southern Iranian coast of the Gulf affects the Gulf of Oman and eastern 
Oman (Mascate and Batina). 

• The eastern slopes and the foot of the Sarawat Mountains of Yemen. 
 
Bahrain 
 In general, Bahrain is affected by most dust sources in Iraq and the Arabian Peninsula and 
especially by: 
 
• The Tigris-Euphrates basin (Iraq). 
• The Ad Dahna Desert in the central-eastern Arabia Peninsula (Saudi Arabia) by the Gulf 

Sea coast favours a continuous supply of dust that is liable to affect Bahrain. 
• The Rub’ al-Khali Desert (Saudi Arabia).  
• The region on the southern Iranian coast of the Gulf. 
 
Qatar 
 In general, Qatar is affected by most dust sources over the Arabian Peninsula and 
specifically by: 
 
• The Tigris-Euphrates basin (Iraq). 
• The Ad Dahna Desert, in the central-eastern Arabia Peninsula (Saudi Arabia) by the Gulf 

Sea coast, favours a continuous supply of dust that is liable to affect Qatar. 
• The Rub’ al-Khali Desert (Saudi Arabia) where dust storms originate before they move over 

the Arabian Sea and eventually impact Qatar. 
• The southern Iranian coast of the Gulf. 
 
Kuwait 
 Kuwait is the country most affected by dust intrusions. It is impacted by dust sources in 
Saudi Arabia and to some extent southern Islamic Republic of Iran. Kuwait is much affected by a 
quasi-continuous dust flow from Iraq.  
 
 In general, the Mesopotamian region in the Syrian Arab Republic, Iraq, western Islamic 
Republic of Iran and the north-eastern Arabian Peninsula are potential sources to impact Kuwait. 
Dust activity in the Tigris-Euphrates basin begins around May, reaches a maximum in July and is 
much reduced by September–November. In spring, the region is affected by north-westerly shamal 
winds that transport dust down to the Gulf. In more detail, impacts from the following sources have 
been reported:  
 
• The region lying east of the ruins of Babylon at Al-Hilla (Iraq), from May to October. 
• The region located to the south of the Euphrates River (Iraq) in summer and autumn. 
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• The region to the south of Ad Diwaniyah (Iraq) from June to October. 
• The region to the west of An Nasiriya (Iraq) all year. 
 
Iraq 
 It is, by far, the country with the most important sources of dust affecting many countries in 
the region. Iraq is impacted by its own sources, located in Mesopotamia and especially in the 
Euphrates-Tigris basin. Iraq can also be impacted by dust sources located in the eastern Syrian 
Arab Republic. 
 
Islamic Republic of Iran  
 The following Mesopotamian regions are potential dust sources that may impact the 
country: 
 
• East of the ruins of Babylon at Al-Hilla (Iraq), from May to October. 
• East of El Rashid (Iraq) to the north of the Euphrates River and south of the Abdul al Aziz 

Mountains. 
• North of Iraq near Mosul: some dust storms moving south-east might impact Ilam province 

(central-western part), mainly in summer. 
• South of Kut (Iraq) in the lowlands of the Tigris River: the Abadan region (south-west) might 

be affected, mainly in summer and autumn. 
• South of Mehran, on the border with Iraq: an impact through a southward track to 

Khuzistan.  
• South of Dezful, where southward dust storms impact the north-eastern Gulf and the south-

west. 
• Caspian Sea: there is notable and persistent dust activity between the Caspian and Aral 

Seas, from May to August, peaking in June and July. 
• The Garabogazköl Aylagy (literally “land strait lake”) is a shallow, inundated depression in 

the north-western corner of Turkmenistan and is the most active dust source in this region. 
• The Turan Depression (Turan Lowland) is a low-lying, desert-basin region stretching from 

southern Turkmenistan through Uzbekistan to Kazakhstan on the south and south-east end 
of the Aral Sea, with persistent dust activity. 

 
In northern parts:  
• A major dust-source area is located in a large intermountain basin south of the Reshteh-ye 

Kuhha-ye Alborz Mountains, extending from Tehran eastward to 60°E to the Dasht-e Kavir 
Desert, consisting largely of salt flats (Prospero et al., 2002). 

 
In central parts:  
• The region of several dry lakebeds to the east and south-east of Esfahan, affects central 

and western areas. 
  

In the eastern-southern region: 
  Dust sources in the Iranian-Afghan-Pakistan borders contribute to high dust levels over the 
northern Arabian Sea: 
 
• The region that lies on the eastern shores of Hamun-e Saber, to north-west Chhand, in the 

east. 
• The intermittent salt lake of Daryācheh-ye Sīstan on the border with Afghanistan in the 

Sistan region. 
• The region north-west of Zabol in Sistan. 
• The Dasht-e Lut, known as the Lut Desert, is a large salt desert in south-eastern Kerman 

and is the world’s 25th largest desert. 
• The Kerman Desert (along the slopes and at the foot of the Beyanae Kerman and Pir 

Shoran Mountains. 
• The Makran coast: the region along the coast of the Gulf and the Arabian Sea on the 

southern flanks of the mountain chain along the coast. 
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 The western area is affected by the east and south-eastern Arabian Peninsula and by 
The Rub' al Khali (Empty Quarter). 
 
Turkey 
 Turkey is a special case because it has notable sources of dust but is only impacted by 
sporadic dust outbreaks from North Africa (the most important) and from northern Middle East 
(least important). Summarizing the main dust sources affecting Turkey are the following (Kubilay, 
2000, 2003 and 2005): 
 
• The North African coast in late winter and spring. 
• Inland North Africa in winter and spring. 
• The south-west, central-eastern Sahara in summer. 
• The Middle East–Arabian peninsula, in autumn, although south-east flow from this region is 

infrequent: dust normally comes from the region lying within a southern extension of the 
Jordan/Syrian desert known as the Great Nafud, and sporadically from the highlands north 
and south of Medina (Saudi Arabia) and from the Upper Euphrates valley (Iraq). 

 
 
A.2.8  Reported dust trends 
 Zhang and Reid (2010) used 10-year (2000–2009) data-assimilation quality Terra MODIS 
and MISR aerosol products, as well as seven years of Aqua MODIS, to study both regional and 
global aerosol trends over the oceans (see Figure 55). Their results about the Middle East are 
quite conclusive. They determined that AOD over the Arabian Sea showed increasing trends of 
0.06 per decade from MODIS. This regional trend is considered as significant with a confidence 
level above 95%. A similar increasing trend was found from MISR, but with less relative magnitude. 
The authors also concluded that the trend over the Arabian Sea was partially the result of 
increased dust aerosol presence. Clear positive trends are observed in the Red Sea, Arabian Sea 
and especially in the Gulf, recording the highest positive trend of AOD in the world. 
 
 

Figure 55 - Spatial distribution of 10-year AOD trends for every 1°×1° (latitude/longitude) (from Zhang and Reid, 2010): 
positive trends over the Arabian Sea, Red Sea and Gulf are well observed. Note the huge AOD increase in the Gulf (in pink), 

the highest positive trend on a global scale 
 

  
 Xia (2011) performed an analysis of changes in AOD and AE using aerosol-loading data 
from 79 AERONET stations with observations from more than six years. He developed a statistical 
method to determine whether AOD changes were due to increased background AOD values 
and/or an increased number of high AOD events. The analysis (Figure 56) shows that AOD at 
Solar Village (Saudi Arabia) showed a strong and significant increasing trend (0.17 per decade), 
according to time series of monthly anomalies of AOD and AE. Increased AOD was dominantly 
attributable to an increased occurrence of high AOD events (46%) and corresponding AOD values 
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(20%). AE decreased by 0.32 per decade. Increased AOD and decreased AE at Solar Village 
station indicate increased dust over the Arabian Peninsula. 
 
 
 

 
 

Figure 56 - Monthly anomalies of AOD (left) and AE (right) at Solar Village AERONET station (Saudi Arabia):  
the smoothed average is represented by the red line (from Xia, 2011) 

 
 
 Making use of a newly developed AOD retrieval algorithm for SeaWIFS measurements over 
land and ocean, Hsu et al. (2012) investigated the distribution of AOD and identified emerging 
patterns and trends in global and regional aerosol loading. They found that the Arabian Peninsula 
is – by far – the region with the largest AOD positive trend in the world (+ 0.0092 ± 0.0013/yr), as 
can be seen in Figure 57. Concerning AERONET data, they also found strong positive trends over 
the Arabian Peninsula, the surrounding Arabian Sea and the Gulf, especially during spring and 
summer (0.0116 ± 0.0015/yr and 0.0140 ± 0.0022/yr, respectively) (see Figure 58).  
 
 
 

 
 
 
 
 
 

Figure 57 - Linear trend based upon deseasonalized monthly anomaly of AOD at 550 nm for the period 1998–2010 (AOD/yr): 
dots indicate significance at 95% confidence level (from Hsu et al., 2012) 
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Figure 58 - SeaWiFS time series of seasonal averaged AOD anomaly over the Arabian Peninsula (10°N–35°N, 35°E–60°E). 

The vertical bars denote the ±1 standard deviation of seasonal averaged AOD anomaly within the specified regions  
(from Hsu et al., 2012) 

 
 
 Data analysis of AERONET observations at Solar Village (Saudi Arabia) shows a 
systematic increase in aerosol load tendency, as well as a decreasing trend in AE (440–870 nm) 
for the period 1999–2010 (Figure 59). AE lower than 0.75 indicates that most of the aerosol 
observed corresponds to the coarse fraction, i.e. mineral dust from deserts (Basart et al., 2009). 
 
 Figure 59 shows a systematic 
increasing aerosol loading signal in 
both SeaWIFS and AERONET data. 
The interannual variations of AE 
anomaly from AERONET data 
(bottom panel) also suggest a 
characteristic increase in coarse 
aerosol fraction, which corresponds to 
mineral dust from deserts. 
 
 According to Goudie (2009), 
the nature of future dust activity will 
depend on three main factors: (a) 
anthropogenic modification of desert 
surfaces (Mahowald and Luo, 2003); 
(b) natural climatic variability (e.g. 
North Atlantic Oscillation); and (c) 
changes in climate arising from global 
warming.  
 
  
Figure 59 - Interannual variation of AOD (top 
panel) and AOD anomaly (bottom panel) from 
SeaWiFS and AERONET measurements co-
located over the Solar Village site, for the 
period February 1999 to April 2010  
(from Hsu et al., 2012) 
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 Concerning anthropogenic influence, we can cite increasing human pressures, including 
disturbance of desert surfaces by road traffic, cutting of vegetation cover for wood supply, crop 
production and desiccation of lakes and soil surfaces by inter-basin water transfers and 
groundwater depletion (for example the Caspian Sea). Pelletier (2006) illustrated that water-table 
depths of 3–10 m represent a critical range over which small variations in water-table depth may 
lead to large, non-linear changes in saltation activity and dust emissions. 
 
 On the other hand, global warming has the potential to cause major changes in dust 
emissions. IPCC (2007(b)) suggests that, under most scenarios, many dryland areas will suffer 
from lower rainfall regimes and drier terrains because of higher rates of evapotranspiration. Lower 
rainfall will favour the formation of shallow or extremely shallow soils that are often characterized 
by a high content of airborne particles and small fractions of rock-erosion elements. Under this 
scenario, dust storm activity could increase, though this conclusion depends on how winds change 
– a matter of great uncertainty. Al-Sarmi and Washington (2011) have provided a clear picture of 
climate change in the region. The general pattern of the Arabian Peninsula mean annual 
temperature trend indicates clear warming with 14 out of 21 stations showing statistically significant 
warming at the 0.05 level and most of them at the 0.001 level. The highest statistically significant 
mean annual warming trends are found in Oman (Sur = 1.03°C/decade) and Emirates (Dubai = 
0.81°C/decade). Trends in mean annual precipitation are significant at only two stations, which 
show a decrease in precipitation. 
 
 In response to a proposed activity of the World Climate Research Programme’s 
(http://www.wcrp-climate.org/) Working Group (WG) on Coupled Modelling, the Programme for 
Climate Model Diagnosis and Intercomparison (http://www-pcmdi.llnl.gov/) collected model output 
contributed by leading climate-modelling centres around the world. These archived data constitute 
Phase 3 of the Coupled Model Intercomparison Project (CMIP3). The CMIP3 ensemble output for 
temperature and precipitation for the A1B emission scenario (West Asia) is shown below. 
 

 
 

Figure 60 - Percentage change in average annual temperature by 2100 from 1960–1990 baseline climate, averaged over 21 
CMIP3 models for West Asia. The size of each pixel represents the level of agreement between models (UK Met Office, 2011) 
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 Figure 60 shows the percentage change in average annual temperature by 2100 from 
1960–1990 baseline climate, averaged over 21 CMIP3 models for West Asia. Projected 
temperature increases over most of West Asia are up to 4°C. The agreement between the 21 
CMIP3 models is good. 
 
 It is expected that a broad swathe of West Asia between 19°N and 41°N will experience 
mainly decreases in precipitation, as shown in Figure 61. Decreases of up to 20% or more are 
projected in north-western Saudi Arabia with strong ensemble agreement. Towards the south and 
east, smaller decreases are projected, and increases of up to 20% or more are projected for the far 
south-eastern Arabian Peninsula. 
 
 Projected higher temperatures and reduced rainfall could favour desertification processes 
and thus the strength of dust mobilization in West Asia. 
 
 

 
 

Figure 61 - Percentage change in average precipitation by 2100 from 1960–1990 baseline climate, averaged over 21 CMIP3 
models for West Asia. The size of each pixel represents the level of agreement between models (UK Met Office, 2011) 

 
 
 
A.3 IMPACTS OF DUST IN WEST ASIA 
 
 Atmospheric dust has significant impacts on many activity areas in much of the world. Due 
to the complexity of how sand- and dust storms impact various socio-‐economic sectors, few data 
regarding budgetary losses are available. The Middle East is the second largest source of global 
dust but, unlike North Africa, where large population centres are concentrated along the coasts of 
the Mediterranean and the Atlantic Ocean, relatively far away from dust sources, much of the 
population in West Asia lives within, or in the vicinity of, dust sources. Figure 62 shows DOD at 550 
nm from NMMB/BSC-Dust for July (period 2003–2009) (left) and the Earth at night in 2012 (from 
Google Earth), where luminosity is roughly proportional to the number of inhabitants or to human 
activities. High DOD in West Asia directly impacts large population centres or industrial areas. 
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Figure 62 - DOD at 550 nm from NMMB/BSC-Dust for July (2003–2009) (left); Earth at night from Google in 2012 
(https://earthbuilder.google.com) (right) 

 
 
 The sections below describe the main impacts of atmospheric dust in general and the 
impacts on countries of West Asia which have been referenced in the technical and scientific 
literature in particular. 
 
 
A.3.1  Dust and pollution: impacts on human health 
 Airborne mineral dust can have numerous repercussions on human health, such as 
allergies, respiratory diseases and eyes infections (WHO, 2005). There is also evidence of a link to 
epidemics of lethal meningitis in the semi-arid sub-Saharan/Sahel territory, known as the 
meningitis belt (Sultan et al., 2005; Thomson et al., 2006; Cuevas et al., 2011; Pérez et al., 2013) 
and increased incidences of paediatric asthma in the Caribbean (Gyan et al., 2005). 
 
 In 1997, the US Environmental Protection Agency established the “PM2.5 standard” (EPA, 
1996), which recognizes the role of aerosols that have diameters ≤2.5 µm in causing health 
problems. Long exposure to, or large doses of, particles below this size can cause respiratory 
damage, because they penetrate deep into the alveoli of the human lungs. Because a significant 
fraction of the mineral DSD contains particles below 2.5 µm in diameter, the welfare of humans 
who inhabit regions having frequent dust storms should be considered. According to Centeno 
(2011), the process of inhalation of mineral aerosol particles leading to deposition in the pulmonary 
alveoli varies with several factors, notably: (a) mineral type (composition) and inclusions; (b) dust-
particle size and shape (< 10–20 µm (inhaled), <2 µm (respired)); (c) length of exposure; and (d) 
certain lung and immune system functions. He concluded that atmospheric dust finer than 2.5 µm 
is of particular importance with respect to community health, as in the PM standard and, moreover, 
that particles <4 µm frequently penetrate more deeply into the lungs, so prolonged exposure can 
lead to pneumoconiosis (including silicosis, asbestosis and other lung conditions). 
 
 Dust outbreaks may greatly increase the ambient air levels of PM recorded in air-quality 
monitoring networks. This impact is especially relevant in southern Europe (Rodriguez et al., 2001; 
Escudero et al., 2005, 2007; Kallos et al., 2007; Mitsakou et al., 2008; Gerasopoulos et al., 2006; 
Koçak et al., 2007; Querol et al., 2009), eastern Asia (Zhang and Gao, 2007) and in some Atlantic 
islands (Prospero, 1999(a) and (b); Coudé-‐Gaussen et al., 1987; Chiapello et al., 1995; Arimoto et 
al., 1997; Viana et al., 2002). 
 
 Some epidemiological studies indicate that long-range dust-transport events are closely 
associated with an increase of daily mortality in Seoul, Republic of Korea (Kwon et al., 2002) and 
Taiwan Province of China causing cardiovascular and respiratory problems (Kwon et al., 2002). In 
a study of 24 850 deaths in Barcelona (Spain), Pérez et al. (2008), concluded that during Saharan 
dust days, a daily increase of 10 µg/m3 of PM10-2.5 increased daily mortality by 8.4% (95% 
confidence interval = 1.5% to 15.8%) compared with 1.4% (–0.8% to 3.4%) during non-Saharan 
dust days (p-value for interaction ∼0.05). Jiménez et al. (2010) found that daily PM10 
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concentrations in Madrid displayed a significant statistical association with daily mortality for all 
causes on days with Saharan dust, while this association was not in evidence for non-‐Saharan 
dust days. Similarly, during Saharan dust intrusions, Díaz et al. (2012) observed effects of PM10 
on mortality due to respiratory causes in the cold season and to circulatory causes in the warm 
one. These studies concluded that further investigation is needed to understand the role of coarse 
particles and the mechanism by which Saharan dust increases mortality. 
 
 Preliminary findings from Garrison et al. (2006) show that air samples from Mali contained a 
greater number of pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic 
hydrocarbons (PAHs) and in higher concentrations than at Caribbean sites. Overall, persistent 
organic pollutant (POP) concentrations were similar in the US Virgin Islands and Trinidad and 
Tobago samples. Trace-metal concentrations were found to be similar to crustal composition with 
slight enrichment of lead in Mali. 
 
 Dust may be also contaminated by microorganisms, such as bacteria and fungi (Kellogg et 
al., 2004) or by toxic chemicals that are harmful when deposited on the skin, are swallowed or 
inhaled into respiratory passages. Prospero (2004) found that detection of bacteria and fungi on 
the Caribbean island of Barbados occurred only in air that contained Saharan dust. Griffin 
(2007(a)) summarizes the current state of knowledge of desert-dust microbiology and the health 
impacts that desert dust and its microbial constituents may have in downwind environments both 
close to and far from their sources. 
 
 Dust may contribute to a high silicosis incidence, as occurs in China (Derbyshire, 2001). 
Trachoma is a chronic follicular conjunctivitis that has virtually disappeared from our environment 
but remains common in northern Africa, where it is caused mainly by hazy environments and dust 
storms. In the western Sahara, 83.3% of the nomadic population was affected by trachoma during 
the period 1884–1975 and blinding trachoma is still widespread in the region today (Murube, 1975, 
1976 and 1997). 
 
Specific references for West Asia 
 
 A study of the relationship of pulmonary health problems to mineral dust carried out in 
Turkey showed that continuous exposure to doses of mineral fibres and silica particles may be the 
cause of a number of benign pulmonary disorders (Doğan, 2002). 
 
 Dust carried by storms in Saudi Arabia has been found to contain aeroallergens and 
antigens which could trigger a range of respiratory ailments (Kwaasi el al., 1998). In Iraq, Al-
Dabbas et al. (2011) found that the allergens commonly associated with dust storms included 
fungal spores, plant and grass pollens and organic detritus. Griffin et al. (2007) analysed air 
samples on top of a coastal atmospheric research tower in Erdemli, Turkey, and demonstrated that 
the region was routinely impacted by dust generated regionally and from North Africa and that the 
highest combined percent recovery of bacterial and fungal colony-forming units (CFU) and African 
dust deposition occurred in the month of April (93.4% of CFU recovery and 91.1% of dust 
deposition occurred during African dust days versus no African dust present for that month). They 
stated that the obvious prevalence of atmospheric desert dust, together with its associated 
constituents (microorganisms, organic detritus, toxins, etc.), might play a significant role in both 
ecosystem and human health. 
 
 Leski et al. (2011) applied highly multiplex polymerase chain reaction and a high-density 
resequencing microarray to screen samples of fine topsoil particles and airborne dust collected in 
19 locations in Iraq and Kuwait for the presence of a broad range of human pathogens. Their 
results showed the presence of potential human pathogens, including Mycobacterium, Brucella, 
Coxiella burnetii, Clostridium perfringens and Bacillus. The presence of Coxiella burnetii, a highly 
infectious potential biological warfare agent had a high prevalence in the analysed samples. The 
detection of potentially viable pathogens in breathable dust from arid areas of Iraq and Kuwait 
underscores the importance of further study of these environments. 
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 During a five-year study period, Thalib and Al-Taiar (2012) analysed retrospective time 
series of daily emergency public hospital admissions for asthma and respiratory illness in Kuwait 
and dust storm events. They recorded a total of 569 days with dust storm events (~34% of total 
days) and found a statistically significant association with an increased risk of same-day 
admissions for asthma and respiratory problems, which was particularly high among children. 
 
 Based on a systematic review of the literature using the Web of Knowledge database, De 
Longueville et al. (2010) found 231 articles published over the last decade on the impacts of desert 
dust on air quality. Of these, 48% concerned Asian dust and 39% Saharan dust, with the remaining 
13% divided between the other dust source areas, which include publications of the Middle East. 
Considering that North Africa is the main dust-emission source area and the second biggest 
source is the Arabian Peninsula, Figure 63 shows an imbalance between the importance of these 
sources and the number of publications on the impacts on air quality and health, especially in the 
Middle East. It is worth mentioning that, according to De Longueville et al. (2010), Asia is the 
world’s most studied region in the literature linking desert dust and air quality. Half the relevant 
publications are about the role of Asian dust in the degradation of air quality in countries on the 
same continent, mainly China and the Republic of Korea. It appears that the whole of this region is 
affected only by Asian dust, mainly from the Gobi Desert, although this is only the third source area 
in terms of quantities emitted, after North Africa and the Arabian Peninsula. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 63 - Importance of the number and distribution of studies on air quality according to dust-source area  
(after De Longueville et al., 2010) 

 
 
 
A.3.2 Ground and flight transportation problems due to visibility reduction 
 Suspended crustal material in a dust storm usually consists of coarse particles with mean 
diameters of tens of micrometres (µm) or more. Most of the particulate mass is of a diameter much 
greater than 2 µm. Although the light-scattering efficiency per unit mass of coarse particles is low, 
compared to that for fine particles, the mass of coarse particles in a severe dust storm is of the 
order of several thousand µg/m3, so that total light extinction is pronounced. Patterson et al. (1976) 
found that the optically important fugitive dust particles included those up to 40 µm in diameter. For 
typical conditions, concentrations between 100 and 400 µg/m3 are needed to reduce daytime 
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visibility to 200 m (Hagen and Skidmore, 1977). If the background is non-sky, visibility is reduced 
an additional 50–75%, compared with a sky background. 
 
 Reduction of visibility might cause flight cancellations, as reported by Shirkhani-Ardehjani 
(2012) for the Khuzestan region in the Islamic Republic of Iran. In 2008, 232 flights were cancelled 
and 172 flights were cancelled in 2009 as a result of dust storms (Table 3). Rerouting due to poor 
visibility, disturbances in airport operations and massive cancelling of scheduled flights give an 
idea of the tremendous impact of dust intrusions on the aviation sector. 
 
 

Table 3 - Economic impact of dust storms on different sectors in Khuzestan, Islamic Republic of Iran  
(after Shirkhani-Ardehjani, 2012) 

 

 
 
 
 
 The impacts on air traffic are not only at airports and flight approach paths but also along 
long transects crossed by a dust storm. Lekas et al. (2011) reported mechanical problems in 
aircraft such as: erosion, corrosion, pitot-static tube blockage or engine in-flight flame-out. They 
summarized the following problems: 
 
• Erosion: desert-dust particles, like volcanic ash, impact and bounce on cold areas of the 

engine (fan or propeller blades), causing surface damage and gap-size augmentation 
leading to gas-flow deterioration and gradual loss of performance of the engine. Damage is 
also caused to the external surface of the aircraft. 

 
• Corrosion: if dust particles impact hot surfaces (e.g. combustor walls, turbine blades), they 

will form a glass deposit with a rough surface which may lead to a rapid loss of performance 
and, subsequently, to potential risk during take-off or landing operations. This deposit may 
also lead to thermal corrosion of a component of the engine or of electronic devices by 
blocking cooling holes. 

 
• Pitot-static tube damage: desert-dust particles can lead to false flight-speed reading by 

blocking pitot-static tubes. This may be extremely hazardous, especially in low-level flight 
and during take-off or landing procedures. 

 
• In-flight flame-out: the glass deposit on hot parts of the engine can significantly disturb the 

airflow, even leading to turbine blades stalling and in-flight flame-out.   
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 As Lekas et al. (2011) stated, the ingestion of these particles has impacts on aircraft 
performance that have not yet been fully explored for the aerospace industry. Dust has safety and 
maintenance implications for aircraft operations which increase their cost in hazy/dusty 
environments. Flight paths and management in dusty environments must take into account 
quantitative predictions of dust air masses along routes and especially in low-altitude flight, as well 
as engine tolerance in dust-mass ingestion. By utilizing dust predictions, the geographical area 
affected, timing and the amount of ingested dust can be calculated along the flight path. It is 
curious that huge investments are being made in observation and prediction systems to monitor 
volcanic ash clouds after the eruption of the Eyjafjallajökull volcano in Iceland in 2010, but virtually 
nothing has been done to improve aviation-oriented techniques for the monitoring, forecast and 
early warning of dust storms, which are more frequent and more widespread than volcanic 
eruptions. 
 
 Recently, the International Civil Aviation Organization (ICAO) introduced some 
modifications to Annex 3 of the Convention on International Civil Aviation – Meteorological Service 
for International Air Navigation – in order to introduce criteria for distinguishing sandstorm and 
moderate or strong dust storm (ICAO, Annex 3, Appendix 6) as used operationally in several 
countries already. This requires more accurate dust-observation and monitoring systems. 
 
 Road transport is also high impacted by dust storms in northern Africa and Asia and 
particularly in the Middle East (Figure 64). Dozens of pages in digital newspapers in countries 
including Saudi Arabia, Kuwait, Qatar and the Islamic Republic of Iran, carry news about the role of 
dust storms in traffic accidents arising from a severe reduction in visibility (Figure 65), stacking 
sand and dust on roads hampering traffic, etc.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 64 - Dust storms cause traffic problems on city roads (http://www.desertaquaforce.com) 
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Figure 65 - Photographs taken in Kermanshah at the same point under high-surface dust-concentration conditions 

(left) and “low” concentration conditions (right) (after Shirkhani-Ardehjani, 2012) 
 

 
 
 Another issue that is acquiring importance and whose impact is beginning to be studied 
quantitatively is the generation of airborne dust by vehicles driving along unpaved roads and 
tracks. On this subject, Greening (2011) has made a first approach to quantifying the emission of 
dust in desert areas by vehicle traffic. 
 
 High-speed rail, a type of transport that operates significantly faster than traditional rail 
traffic, might be negatively affected by dust storms, especially sand, which could cover part of the 
rails, rendering the service inoperative. For example, the maintenance of Saudi Arabia's first high-
speed passenger 408-km rail line, which will link the cities of Makkah and Madinah (slated for 
completion by January 2014) could be optimized with an NRT dust-monitoring system, consisting 
of ground-based sensor arrays along its path, and ad hoc, high-resolution SDS predictions. 
 
 SDS monitoring systems in Saudi Arabia will be crucial for optimum operation of new 
railway expansion projects currently underway, which include North-South Rail and the Land-
bridge Project between Riyadh and Jeddah. 
 
 
A.3.3 Dust impact on ecosystems  
 IPCC (2007) indicates that the problem of land degradation and desertification prevalent in 
West Asia will be exacerbated by climate change. The expected increase in temperature, decline 
in precipitation and greater intensity and frequency of droughts and dust storms will impact 
rangelands and rain-fed cropland and contribute to land deterioration, biodiversity loss and the 
spread and intensification of desertification (UNEP, 2012). Dust emissions reduce soil fertility 
through the removal of small soil particles rich in nutrients and organic matter, which contributes to 
desertification and reduces agricultural productivity (Shao, 2008). 
 
 Dust deposition has been found to affect many physiological processes of plants, including 
photosynthesis, stomata functioning and productivity by covering and plugging stomata, shading 
and removing cuticular wax (Luis et al., 2008). Wijayratne et al. (2009) experimented with plants 
that were dusted bimonthly at canopy-level dust concentrations, and physiology and growth were 
monitored until plants senesced. Average growth declined with increasing dust accumulation but 
seasonal net photosynthesis increased. The authors explain this pattern of greater net 
photosynthesis with increasing dust accumulation by higher leaf temperatures of dusted 
individuals. Ibrahim and El-Gaely (2012) investigated the effect of dust on plants in Saudi Arabia. 
They concluded that the exposure of plants to dust resulted in a drastic effect on some 
physiological parameters, such as the loss of chlorophyll-a and b contents, inhibition of net 
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photosynthetic rate and significant decrease of stomata conductance. Their results were evidence 
that dust deposition decreased overall plant performance through its severe effect on 
photosynthesis. 
 
 Stefanski and Sivakumar (2009) summarized the impacts of sand- and dust storms on 
agriculture: loss of crop and livestock, loss of plant tissue as a result of sandblasting by the sand 
and soil particles and, therefore, reduced photosynthetic activity and reduced energy (sugars) for 
the plant to utilize for growth, reproduction and the development of grain, fibre or fruit.  
 
 Dust also has global impact on ecosystems far away from dust sources, however. Garrison 
et al. (2003) reported that viable microorganisms, macro- and micronutrients, trace metals and an 
array of organic contaminants are transported in the dust air masses and deposited in the oceans. 
Since hundreds of millions of tonnes of dust are transported annually from Africa and Asia to the 
Americas, dust deposition on oceans may be adversely affecting coral reefs and other downwind 
ecosystems. Garrison et al. (2006) worked on a multidisciplinary and international project to 
elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. They 
identified and quantified POPs, trace metals, and viable microorganisms in the atmosphere in dust-
source areas of West Africa and in dust episodes at downwind sites in the eastern Atlantic (Cape 
Verde) and the Caribbean (US Virgins Islands and Trinidad and Tobago). Preliminary findings 
showed that air samples from Mali contained a greater number of pesticides, PCBs and PAHs and 
in higher concentrations than the Caribbean sites.  
 
 Desert-dust deposition also influences the biochemical cycles of both oceanic and 
terrestrial ecosystems (Okin et al., 2004; Mahowald et al., 2005; Aumont et al., 2008). The 
productivity of many ecosystems depends on the availability of phosphorus (Okin et al., 2004). The 
deposition of dust-borne phosphorus is therefore often critical for ecosystem productivity (i.e. 
primary biomass production). Soils that entrain deposited airborne particles may become enriched 
in nutrients that are otherwise not present in native soils. The Amazon rainforest is a good 
example, since its productivity is limited by dust-borne phosphorus deposition (Swap et al., 1992).  
 
 The impacts of mineral dust on ecosystems arise predominantly from the delivery of 
nutrients by dust deposition. It has been estimated that 360–500 Tg of mineral dust are deposited 
annually in the oceans, with ~50% of the total deposition occurring in the North Atlantic Ocean 
(Prospero, 1996). Prospero (1999(a) and (b) and Prospero et al. (2001) have performed interesting 
studies on the transoceanic transport and deposition of African dust in the south-eastern USA and 
islands in the Atlantic Ocean. 
 
 Wind-transported mineral dust may play a large role in supplying soluble iron to the oceans’ 
aerosols (Fung et al., 2000; Jickells and Spokes, 2001), providing micronutrients to biological 
species, such as phytoplankton.  
 
 Nutrification of the open ocean originates mainly from deposited aerosol in which bio-
available iron is likely to be an important factor (Nickovic et al., 2013). The relatively insoluble iron 
in dust from arid soils becomes more soluble after atmospheric processing and could contribute to 
marine primary production (Ramos et al., 2009). This positive impact of dust on ecosystems is 
schematized in Figure 66.  
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Figure 66 - Dust effect on marine ecosystem (from Woods Hole Oceanographic Institution) 
 
 
 Hamza et al. (2011) reported that significant quantities of dust derived from the Arabian 
Peninsula form part of the annual dust input into the Indian Ocean directly and indirectly through 
water exchange with the Gulf. This increased photosynthetic activity in the Indian Ocean due to 
fertilization by dust nutrients from the Gulf and its adjacent water bodies may well be important in 
mitigating the increase in anthropogenic CO2 in the atmosphere. 
 
 Deposition of dust over the ocean can also produce harmful algal blooms (HABs), popularly 
known as red ties. An intense bloom can produce harmful impacts on marine ecosystems. When 
masses of algae die and decompose, they can deplete oxygen in the water and the animals either 
leave the area or die. Some HABs produce powerful toxins that can kill fish, shellfish, marine 
mammals and birds and may cause disease in humans. Two common causes of HABs are nutrient 
enrichment, especially phosphates and nitrogen, and warm waters. Iron and phosphates are 
provided by Saharan dust deposition over the North Atlantic, producing HABs (Ramos et al., 2005). 
 
 Nickovic et al. (2013) simulated numerically the path of iron on its atmospheric route from 
desert sources to sinks in the ocean. They have thus developed a regional atmospheric dust-iron 
model that includes parameterization of the transformation of iron to a soluble form caused by dust 
mineralogy, cloud processes and solar radiation. 
 
 Schulz et al. (2012) provide a review of our knowledge concerning the measurement and 
modelling of mineral-dust emissions to the atmosphere, its transport and deposition to the ocean, 
the release of iron from the dust into seawater and the possible impacts of that nutrient on marine 
biogeochemistry and climate. They argue that, although mineral dust is a perennial constituent of 
the Earth’s atmosphere and its constant deposition to the ocean, there are serious limitations to 
modelling adequately the global dust cycle, which is one of the primary uncertainties in developing 
future climate scenarios. The authors say there is an urgent need for long-term measurements in 
the marine atmospheric boundary layer through a network of study sites spread across different 
oceans. In Figure 67 we can see many areas downwind from known dust sources, such as the 
Middle East, showing a lack of observations involving both atmospheric and marine measurements 
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that limits the capacity to address the complex and interlinked processes and role of dust/iron 
fertilization in marine biogeochemistry and climate. 
 

 
 

Figure 67 - Sites for a proposed long-term marine atmospheric measurement network located on multimodel  
median dust-deposition field from 12 AeroCom models (after Schulz et al., 2012) 

 
 
 There are few studies concerning the Arabian Sea but it is worth mentioning Siefert et al. 
(1999), who performed a chemical characterization of atmospheric aerosols over this region and 
Srinivas et al. (2011), who assessed the impact of anthropogenic sources on iron solubility. 
 
The deposition of dust to both land and ocean ecosystems stimulates productivity, thereby 
affecting also the biogeochemical cycles of carbon and nitrogen (Mahowald et al., 2011. Mahowald 
et al. (2010) hypothesized that global changes in dust deposition to ecosystems contributed to 
changes in CO2 concentrations over the past century, and Mahowald (2011) suggested that dust-
induced changes in CO2 concentrations may also play a role in future climate changes (see also 
Section A.3.5). 
 
 While the only source of wind-blown dust is currently considered to be deserts, studies 
have shown that agricultural lands and dry playas can also be sources. Pelletier (2006) 
constructed a process-based numerical model to couple soil moisture in the unsaturated zone with 
saltation activity and dust emissions at the surface. He found that water-table depths of 3–10 m 
represented a critical range over which small variations in the water-table depth may lead to large, 
non-linear changes in saltation activity and dust emissions. He developed a model for determining 
the impact of climatic and anthropogenic changes on dust activity in playa basins.  
 
 Additionally, through the so-called semi-direct effect, dust affecting the thermal atmospheric 
structure can modify cloud formation (Hansen et al., 1997). In turn, the effect of dust on cloud 
formation affects the atmospheric radiative balance (IPCC, 2007; Zeng et al., 2009) (Figure 68). 
On the other hand, the deposition of dust on glaciers and snow decreases the albedo (reflectivity) 
of these surfaces, which produces a positive (warming) climate forcing and an earlier spring 
snowmelt (Painter et al., 2010). 
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Figure 68 - Radiative forcing of climate between 1750 and 2005 (IPCC, 2007): the radiative forcing uncertainty from aerosols 

(much of the mineral dust) is significant 
 
 
 The radiative effects of mineral dust have been fully incorporated into an atmospheric dust 
model (Pérez et al., 2006), which represents a promising approach for further improvements in 
numerical weather prediction (NWP) practice and radiative impact assessment over dust-affected 
areas. These areas experience a strong negative feedback upon dust emission, because a 
smaller, outgoing, sensible turbulent heat flux reduces the turbulent momentum transfer from the 
atmosphere and dust emission, resulting in a high reduction of AOD over dust-covered areas. 
 
 Mineral dust may also affect air temperatures through the absorption and scattering of 
radiation (Li et al., 1996; Moulin et al., 1997; Pérez et al., 2006).  
 
 Heterogeneous chemistry occurring on atmospheric mineral dust affects the composition of 
the troposphere (Cwiertny et al., 2008). There is a long record of negative correlation between 
ozone (O3) and aerosols during desert-dust outbreaks. In situ measurements show significant 
reduction in O3 concentrations under high dust concentrations (Prospero et al., 1995; de Reus et 
al., 2000; Bonasoni et al., 2004; Cuevas et al., 2013). Three pathways have been proposed by de 
Reus et al. (2000) to explain observed O3 reduction: (a) decrease in formation rates as photolysis 
is reduced by extra-scattering (Dentener et al., 1996); (b) direct uptake of O3; and (c) nitric acid 
heterogeneous removal. 
 
 Dust might also inhibit hurricane formation (Evan et al., 2006; Sun et al., 2008) and induce 
coupled ocean-atmosphere variability in the tropical Atlantic (Evan et al., 2011). 
 
 Finally, dust can have a significant effect on sea-surface temperature (SST) retrievals from 
satellites. Although cloud-screening algorithms will often detect thick layers of aerosol, biases up to 
3 K will remain (Merchant et al., 2006), depending on the SST retrieval algorithm and brightness-
temperature impacts of the dust, affecting NWP. We can therefore see how dust affects weather, 
atmospheric composition and climate through a wide range of interactions and both positive and 
negative feedbacks.  
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 Studies dealing specifically with the impact of dust on weather/climate in the Middle East 
are scarce. Satheesh and Srinivasan (2002) stated that the radiative forcing due to 
Arabian/Saharan aerosols (mostly natural) during April and May is comparable and often exceeds 
(as much as 1.5 times), the forcing due to anthropogenic aerosols during the January–March 
period. The presence of dust load over the Arabian Sea can influence the temperature profile and 
radiative balance. Mashayekhi et al. (2010) showed a negative radiative forcing over Tehran under 
the presence of mineral dust aerosols using coupled aerosol-cloud and radiation WRF-HAM 
modelling system simulations and measured downward radiation. Stenchikov et al. (2011) showed 
that the regional sensitivity to radiative forcing in the Middle East is very high. As shown in Figure 
69, dust cools the surface and warms the column atmosphere. The aerosol (mainly dust) radiative 
cooling over sea is much stronger than over land. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 69 - Short-wave–long-wave net aerosol radiative climatology (1979–2010) (after Stenchikov (2011)) 
 

 
 
A.3.4  Dust impact on energy and industry 
 The deserts could provide a huge amount of the power required in the world by using a 
variety of solar-power generation technologies, including photovoltaic (PV), concentrated 
photovoltaic (CPV) and concentrated solar-power systems (CSP).  
 
 Interest in electricity from solar-powered plants is reportedly increasing in the Gulf 
Cooperation Council countries. The targets set by individual governments for electricity production 
from renewable energy sources are: Abu Dhabi: 7% by 2020; Dubai: 5% by 2030; Saudi Arabia: 
16-GW PV and 25-GW CSP by 2032; Kuwait: 5% by 2030; Oman: 5% by 2020 and Bahrain: 10% 
by 2030. 
 
 Deserts are the obvious location for solar-power plants since land is inexpensive and 
sunshine is plentiful. Unfortunately, dust causes solar-light extinction and dirt on the solar panels, 
which can greatly impair efficiency. The integration of aerosols and their radiative effects on direct 
normal irradiance (DNI) predictions is considered to be one of the most urgent questions to be 
addressed (Gueymard, 2012). AOD is a critical input to radiation models and determines the 
accuracy of modelled DNI under clear skies (Cachorro et al., 1987). Dust intrusions play a catalytic 
role on absolute levels and also DNI short-term variability. High AOD values observed in West Asia 
produce a significant DNI attenuation, which is a key parameter in CSPs. 
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 Ohde and Siegel (2012) investigated the impacts of Saharan dust and clouds on solar 
irradiance and photosynthetically available radiation to derive a relationship between the latter and 
AOD. They concluded that the reduction by dust was between 3.6% and 12.3% and by clouds was 
between 6% and 15%. A linear relationship confirmed a decrease of nearly 1.2% in 
photosynthetically available radiation as per an increase of 0.1 in dust AOD. 
 
 In the case of desert sites, there is great concern that the continuous accumulation of dust 
on solar panels might eventually neutralize their effectiveness. Different studies show that the 
transmission loss of sunlight through the front glass plates of photovoltaic devices could vary from 
5% to 30% per year, depending on dust deposition. Rate and characteristics of dust deposition in 
some of the semi-arid and desert areas of the world with a potential of large-scale solar 
installations and loss of transmission and reflection of sunlight in the PV, CPV and CSP systems 
as a function of particle size and charge distributions have been reported by Sayyah et al., 2012. 
 
 El-Shobokshy and Hussein (1993) analysed the effect of accumulation of dust and 
particulate matter on the surface of PV cells in Saudi Arabia, concluding that fine particulates 
significantly degrade their performance – more so than coarser particles. El-Nashar (2003) studied 
the influence of dust deposition on the evacuated tube collector field on the operating performance 
of the solar desalination plant at Abu Dhabi, UAE. He measured the reduction in transmittance due 
to dust deposition on the amount of heat collected and its influence on distillate production.  
 
 Elminir et al. (2006) showed that the reduction in normal glass transmittance depends 
strongly on dust-deposition density in conjunction with tilt angle. They showed that, for dust 
deposition density ranging from ~5 to ~16 g/m2, the transmittance diminishes by ~13% and 53%, 
respectively. For moderately dusty places, therefore, they recommend weekly cleaning of the glass 
covers as part of the maintenance routine and cleaning of the equipment immediately after a dust 
storm to retain its nominal operating efficiency. Sulaiman et al. (2011) reported that dust had an 
important effect on the performance of solar PV panels, being the reduction in the peak power 
generated of up to 18%. They also showed that, under high irradiance, the effect of dust is slightly 
reduced but not negligible.  
 
 Apart from a dramatic deterioration in performance of solar panels, dust also causes 
additional costs for cleaning and maintenance (Boykiw, 2011). 
 
 Charabi and Gastli (2012) performed a climatology of AOD from MISR over Oman, 
concluding that high dust-deposition rates in areas near dust sources disable these areas for the 
production of energy from PV and CPV plants, since they require more frequent cleaning and, 
hence, large amounts of water. They recommended including the annual average AOD as a 
variable to be taken into account when planning solar-energy systems and gave the example of 
Oman, where 64% of the territory is severely affected by dust and is not recommended for solar 
power plants. Charabi and Gastli (2013) demonstrated that only 9% of the total area of Oman, 
mainly concentrated in the proximity of the southern east coast, is suitable for the implementation 
of large PV power plants because of the low DOD and moderate temperatures due to the wind 
regime. 
 
 Mani and Pillai (2010) published a comprehensive review of the current state of research 
into the impact of dust deposition on the performance of solar systems, particularly PV, and 
identified challenges to further research in this area. Particularly interesting are the new 
methodologies of self-dusting solar panels that are cleaned by an electric charge provided by the 
solar panels themselves. The self-dusting solar panels are based on technology developed for 
missions on Mars. The technology consists of placing a transparent, electrically sensitive material 
deposited on glass or a transparent plastic sheet covering the panels. Sensors monitor dust levels 
on the surface of the panel and energize the material when dust concentration reaches a critical 
level. The electric charge sends a dust-repelling wave cascading over the surface of the material, 
removing the dust and transporting it off the screen’s edges. 
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 The Abu-Dhabi-based Research Centre for Renewable Energy Mapping and Assessment 
(the Masdar Institute) created, developed and validated a satellite-based solar mapping tool for 
producing 15-minute solar irradiance maps, together with monthly and yearly solar irradiation maps 
for the UAE’s Solar Atlas. Hosni Ghedira, Director of the Institute, explained the need for a regional 
model thus: “While, in theory, the UAE receives the same if not far more solar energy than Europe 
or North America, in reality the dusty atmosphere cuts out as much as 90% of the Sun’s energy 
during a heavy dust storm” (http://www.satelliteprome.com/tech-features/satellite-imagery-for-solar-
maps/). Dust monitoring and climatology must therefore be incorporated into the irradiance atlas of 
the region. 
 
 On the other hand, the microwave signal attenuation caused by dust is one of the major 
problems in utilizing microwave bands for terrestrial and space communication, especially in desert 
and semi-desert areas (Elabdin et al., 2009).  
 
 Tribology is the science and engineering of interacting surfaces in relative motion. It 
includes the study and application of the principles of friction, lubrication and wear. Dust has such 
an important impact on industrial processes, mechanics, etc., that Diao (2009) identified specific 
tribology problems (and solutions) deriving from dusty environments and has developed equipment 
to study industrial tribology problems in natural sand and dust environments. 
 
 US Army (2009) describes the sand and dust tests performed on vehicles, engines and 
other military equipment, using an outdoor facility. These highly protocolized tests are performed in 
order to know the effect of sand and dust on different pieces of equipment and their performance 
under high sand and dust concentrations. 
 
 The presence of dust has a significant impact on the reliability of printed circuit board 
assemblies (PCBAs). Song et al. (2012) found negligible change in the impedance spectra of 
control samples at different relative humidities, while there were orders of magnitude changes 
observed in the samples in the presence of indoor or outdoor dust. They demonstrated that at the 
same dust-deposition density, test samples with indoor dust are more likely to induce moisture-
related failures. These failure mechanisms include loss of surface-insulation resistance between 
electrodes, electrochemical migration and corrosion. The impact of dust on the reliability of PCBAs 
is ever growing, driven by the miniaturization of technology and the increasing uncontrolled 
operating conditions with more dust exposure in telecommunication and information industries. 
This could have special impacts in countries with hazy environments, such as those in West Asia. 
 
 Finally, dust storms affect the oil industry. It is not unusual to read in the newspapers that 
dust storms halt oil exportation when commercial port activities are suspended due to low visibility 
(e.g.http://www.upi.com/Top_News/World-News/2011/04/13/Dust-storm-halts-Kuwait-oil-
traffic/UPI-63241302703251/). 
 
 
A.3.5 Dust, weather and climate 
 Mineral dust is one of the major contributors to Earth’s radiative balance in view of its 
radiation backscattering (Tegen et al. 1996; Mahowald et al., 2006, 2010). Dust also impacts long-
wave terrestrial irradiance, especially at dust sources because of the relatively large size of the 
dust particles, which interact efficiently with terrestrial radiation. Mineral dust thus modifies the 
transfer of solar radiation (spectral range: 0.3 µm–3 µm wavelength) through the atmosphere by 
scattering and absorption processes. Depending on the size distribution, chemical composition and 
shape of the dust particles (which determine their optical properties: extinction coefficients, SSA 
and phase functions) and depending on the vertical position/extent of the dust layer and the local 
surface albedo, the mineral dust particles may have positive (heating of climate system) or 
negative (cooling) radiative forcing (e.g. Sokolik and Toon, 1996; Tanré et al., 2003). In a global 
annual balance, dust net radiative forcing at the top of the atmosphere (TOA) is most likely 
negative (cooling) for desert dust (Kaufman et al., 2001; Dubovik et al., 2002; Balkanski et al., 
2007; García et al., 2012) but regionally positive values (warming) may occur over bright surfaces 
such as snow-covered or desert areas (Tegen et al., 1996; Hansen et al., 1997). This is because 
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dust normally causes increased reflection of sunlight over dark surfaces (e.g. the ocean) and 
decreased reflection of sunlight over bright surfaces (e.g. snow, ice, clouds or desert). Spyrou et al. 
(2013) showed strong interaction of dust particles and solar and terrestrial radiation, with several 
implications for the energy budget of the atmosphere. A profound effect is the increased absorption 
(in the short and long wave) in the lower troposphere and the induced modification of the 
atmospheric temperature profile. 
 
 IPCC (2007) reported that the dust radiative effect due to mineral aerosols lies in the range 
of –0.56 to +0.1 W/m2. Case studies of instantaneous dust net radiative forcing during individual 
dust events show negative TOA values higher than −6 W/m2 (Christopher and Jones, 2007; Zhu et 
al., 2007) or negative values larger than −400 W/m2 at the surface (Costa et al., 2006).  
 
 Dust impacts climate, and changes in climate have driven the global dust cycle. Rea (1994) 
and Kohfeld and Harrison (2001) reported a larger global dust-deposition rate during glacial 
maxima than during interglacials. The radiative forcing resulting from such large changes in the 
global dust cycle is thought to have played an important role in amplifying past climate changes 
(Jansen et al., 2007; Abbot and Halevy, 2010). 
 
 Dust also affects the hydrological cycle. Firstly, when dust cools, the surface inhibits both 
evaporation and precipitation (Miller et al., 2004; Zhao et al., 2011). Secondly, dust modifies the 
size distribution and the phase of cloud particles by acting as CCN and ice nuclei (DeMott et al., 
2003), modifying the development of precipitation (Levin and Cotton, 2008) or either enhancing or 
suppressing precipitation (Ramanathan et al., 2001; Toon, 2003). Mineral dust generates large 
concentrations of CCN (Rosenfeld et al., 2001), mostly in the small-size range that can lead to 
cloud formation dominated by small droplets. As a result, this could lead to droplet coalescence 
reduction and suppressed precipitation (Teller and Levin, 2006). Mineral dust coated with sulphate 
and other soluble materials such as nitrates can, however, generate large CCN (Levin et al., 1996; 
Li and Shao, 2009) and, consequently, large drops, which accelerate precipitation development 
through droplet growth by collection. 
 
A.3.6 Role of SDS activities in the new climate services 
 Climate variability and change are posing significant challenges to societies worldwide. 
Timely communication of climate information helps prevent the economic setbacks and 
humanitarian disasters that can result from climate extremes and long-term climate change (WMO, 
http://www.wmo.int/pages/themes/climate/climate_services.php). Climate information also plays a 
crucial role in national development planning, for managing development opportunities and risks 
and for mitigation and adaptation strategies. Efficient application of climate services requires the 
integration of climate information into policies in various sectors. 
 
 West Asia countries have a hazy environment, as SDS occur throughout the year, 
impacting crucial social and economic activities (Akbari, 2011). Dust-related parameters and 
variables, such as horizontal visibility, PM concentration, AOD, etc., must be incorporated as 
added values in databases of future national climate services. Long-term dust-related observations 
and model reanalysis may help health and energy communities and other economic sectors 
understand, assess and plan respective activities. SDS are closely linked to droughts and soil 
deterioration, so they can be used as early warning indicators of climate variability and change. 
Comprehensive, long-term dust databases might help to understand and prevent health problems 
through epidemiological studies. Dust climatologies might contribute to planning and performing 
feasibility studies of future solar-power facilities.  
  
 Dust-related products are fundamental in customer-oriented climate services in West Asia 
countries. 
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B.1 ANALYSIS OF SDS ACTIVITIES IN WEST ASIA COUNTRIES 
 
 This section contains a summary of capabilities in West Asia countries concerning SDS 
observation and modelling, capacity-building and data exchange.  
 
 The survey took account of information from: 
 
• International observation and monitoring networks related to SDS activities. 
• Institutions running dust models. 
• Completed questionnaires received from the WMO permanent representative of each 

country and from groups carrying out SDS activities at air-quality agencies, research 
centres and universities of the region. 

• Direct contacts made during the mission to Marrakech, during the Arab Permanent 
Committee of Meteorology (Session 29), 8–10 April 2013.  

 
 This section has been structured as in the questionnaire: 
 
B.1.1  In situ observations 
B.1.1.1  Visibility and sky conditions 
B.1.1.2  In situ PM10/PM2.5 
B.1.1.3  Ground-based remote-sensing observations 
B.1.2   Satellite observations 
B.1.3   Modelling 
B.1.4   Data exchange 
B.1.5   Application of SDS products and services 
B.1.6   Capacity-building 
 
 
B.1.1 In situ observations 
 
B.1.1.1  Visibility and sky conditions 
 The most comprehensive network of observations related to SDS activities is undoubtedly 
the synoptic observation network (Figure 70) providing visibility and present-weather data. 
 
 In general, there is a good distribution of SYNOP stations, except in the Empty Quarter in 
Saudi Arabia and adjacent areas of Oman and Yemen, where the gap is significant (Figure 70). 
Certain lowland areas (blue) in the Islamic Republic of Iran have a low density of stations. Most 
countries have operational automatic devices for visibility range such as meteorological optical 
range (MOR) and runway visual range (RVR) at airports, which is important, since one of the 
activities most affected by dust is air traffic. 
  
 Visibility reduced by atmospheric dust from SYNOP observations could be an interesting 
product, at least for dust nowcasting. Some value-added activity should be implemented in NRT, 
however, as a filter for including relative humidity and present-weather data, to avoid including 
reduced visibility arising from fog or heavy rain. 
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Figure 70 - SYNOP stations in West Asia: a specific colour indicates the decade when observations started at each station 

 
 

 Figure 71 gives the monthly climatology (box plots) of horizontal visibility at the Bahrain 
station. The main problem of this information is that reduced visibility is traditionally reported only 
when it is lower than 10 km but haze and dust are normally present with much higher horizontal 
visibilities. Hence, this parameter is really useful only to report moderate-to-strong dust storms. 
The monthly visibility trend at Bahrain shows a flat behaviour (quite similar through the year), which 
has nothing to do with the annual variation of AOD in this station shown in Section A.3.5 (Dust, 
weather and climate). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 71 - Monthly climatology of horizontal visibility at Bahrain (20032010) 

  
 
See Section B.2.1.1. (Visibility) for corresponding recommendations. 
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 Concerning complementary visual information provided by total-sky cameras or web 
cameras, no institution has reported their use in the questionnaires. 
 
 During the UAE2 experiment, however, total-sky cameras were used to provide visual 
information of dust intrusions, demonstrating their usefulness for high-temporal resolution tracking 
of dust storms (see Figure 72). 
 
 
 
 
 

Figure 72 - Selected sky images for 3 September 2004 during the UAE2 campaign. At about 10:00 UTC, the dust front was 
looming on the horizon in the east. Half an hour later, part of the sky was blocked.  

The sky turned brownish during the dust storm (after Reid et al., 2005) 
 
 
B.1.1.2 In situ PM10/PM2.5 
 PM10 and PM2.5 are interesting atmospheric parameters normally monitored within air- 
quality network programmes.  
 
 The number of PM10/PM2.5 stations in the countries reporting this information is 
reasonable and proportional to their population (Table 4) and geographical extension.  
 
 

Table 4 - Number of PM10/PM2.5 stations per country 
 

Country Gravimetric method NRT (Beta** or TEOM***) Chemical analysis 
United Arab 
Emirates 

 ~40  

Islamic Republic 
of Iran 

5 118  

Kuwait 3 11 (2 NRT)  
Oman*  4 (with a mobile unit)  
Saudi Arabia  5  
Turkey 45 (cities) More than 100 (cities) 45 (cities) 

 
*     The Ministry of Environment and Climate affairs of Oman has been running a mobile 
 network for monitoring PM2.5 and 10 in Muscat, Sohar, Sur and Salalah since 2002. 
**    Betabeta-attenuation analysers  
***  Tapered element oscillating microbalance 
  
 It seems that the majority of stations – if not all – are in cities as part of air-quality networks. 
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 PM10/PM2.5 networks for dust characterization and for understanding its impact on the 
population are of great importance to the countries of the region. On the other hand, in situ PM10 
measurements are crucial to validate surface-dust concentration from models. Some efforts should 
be made in the design and strategy of part of the measurement programme in order to obtain 
optimal performance in the characterization of aerosol/dust background, which is explained in 
Section B.2.1.2. (In situ particulate matter). In situ PM measurements are important, since they tell 
us about aerosols/dust inhaled by people and, therefore, how dust storms directly affect people 
and ecosystems. We have to bear in mind that most of the information provided by satellites 
corresponds to the total content of aerosol/dust in the atmospheric column and this does not 
necessarily have a direct correspondence with surface-dust concentration. Furthermore, the 
chemical composition of surface aerosol/dust is another important aspect of impacts on health and 
other applications and cannot be provided by remote techniques, only by in situ PM sampling. 
From the point of view of SDS monitoring, the major deficiencies identified are the following: 
 
• An insufficient number of stations to monitor mineral dust (mainly PM10) are located in rural 

background conditions, which would provide information about its impact on air quality in 
cities. PM10 and PM2.5 measurements in urban air-quality networks represent a mix of 
anthropogenic pollution (vehicles, gas flares, industries, ships) and natural contributions. It 
is difficult to separate the contribution of each source if there are no background stations 
unaffected by anthropogenic contributions. 

 
• There are no standards of air quality – especially for PM10 – common to all countries of the 

region. 
 
• A regional centre for common and homogenized quality assurance is lacking. 
 
B.1.1.3  Ground-based remote-sensing observations 
  AERONET (http://aeronet.gsfc.nasa.gov) is a federation of regional networks based on 
photometric instruments located at ground stations (currently, more than 400 stations worldwide) 
for monitoring atmospheric aerosols, including atmospheric mineral dust. It requires the 
standardization of instruments, calibration, data processing and distribution. AERONET seeks to 
provide continuous time series of aerosol measurements, such as microphysical and radiative 
properties in the atmospheric column, that are easily accessible and is dedicated mainly to the 
characterization of aerosols and the validation of satellite data and aerosol models, as well as 
synergies with other databases. AERONET was established by NASA and the Atmospheric Optics 
Laboratory (Laboratoire d'optique atmosphérique (LOA) of the University of Lille (France)). 
PHOTONS (http://loaphotons.univ-lille1.fr/) and the Iberian network for aerosol measurements 
(Red ibérica de medida fotométrica de aerosoles (RIMA), http://www.rima.uva.es/) have joined as 
federated AERONET networks, following the same standards and requirements.  
 
 The world AERONET map (Figure 73) shows a high density of stations over Europe, the 
Americas and East Asia but the two most important dust sources in the world (northern Africa – 
Sahara – and West Asia) have very few photometers. Focusing on West Asia, Figure 74 shows 
poor, unevenly distributed, network coverage. AERONET does not cover dust hotspots or large 
cities affected by sand- and dust storms. 
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Figure 73 - Map of AERONET stations (http://aeronet.gsfc.nasa.gov) 
 
 
 
 

 
 

 
Figure 74 - Location of AERONET stations in West Asia. Stations circled in red correspond to  

present operationally active stations 
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The present active AERONET stations are the following: 
 
 

Table 5 - List of current operational AERONET stations in West Asia 
 

Country AERONET station Site, institution 
Saudi Arabia KAUST campus  Thuwai, King Abdullah University of Science and 

Technology (KAUST) 
Saudi Arabia Hada El-Sham  Jeddah, King Abdulaziz University and the Finnish 

Meteorological Institute (temporary) 
Saudi Arabia Solar Village Naif Al-Abbadi, Energy Research Institute  

King Abdulaziz City for Science and Technology 
(KACST) 

United Arab Emirates Masdar Institute Masdar city, Masdar Institute of Science and 
Technology 

United Arab Emirates Mezaira Mezaira, National Centre for Meteorology and 
Seismology 

Islamic Republic of Iran IASBS Zanjan, Department of Physics, Institute for 
Advanced Studies in Basic Sciences 

Turkey IMS-METU-ERDEMLI Erdemli Mers’n, Marine Sciences-Middle East 
Technical University 

 
 
 
 Only seven AERONET stations are operational at present in West Asia and one of them is 
for the temporary field campaign, Hada-El-Sham (Saudi Arabia), next to a permanent station 
(Table 5). 
 
 Recognizing that AERONET is the largest and most important network in the world for 
aerosol monitoring and validation of both satellites and aerosol models, and that there is no 
evidence of the existence of other photometer networks in the region, the situation is decidedly 
worrying. The surface of West Asia is greater than that of western Europe, where there are nearly 
100 active and operational AERONET stations, and where problems derived from aerosols/dust 
are not as pressing as they are in West Asia. 
 
 According to the station map, sites are lacking in southern Saudi Arabia (Empty Quarter), in 
the large corridor leading from eastern Syrian Arab Republic and Mesopotamia (Iraq) to north-east 
Oman, passing over the Gulf. 
 
 Observation capacity with sunphotometers must be urgently addressed for the reasons 
discussed above. See Section B.2.1.3 (Aerosol optical depth with sunphotometers 
(recommendations)). 
 
 Concerning lidars and ceilometers, the capacity is quite low.  
 
 Worth noting, however, is the long-established expertise (nine years) in lidar techniques of 
the Optics Laboratories of the Institute for Advanced Studies in Basic Sciences (IASBS) at Zanjan 
(Islamic Republic of Iran), led by Hamid Khalesifard. The monitoring of atmospheric aerosols, 
including dust and urban pollution, is the main goal of this group. The remote-sensing laboratory of 
IASBS is equipped with: 
 
• A four-channel Raman lidar (2 x 532 nm, 1 064 nm and 607 nm, N2 Raman-channel); and  
• A transportable scanning (p-plane and almucantar), two-channel elastic backscatter 

depolarization lidar (532 nm). 
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 Both lidars have been designed and constructed in the IASBS Optics Laboratories. 
  
 In August–September 2004, the intensive UAE2 field campaign was conducted in the UAE 
and over the adjacent Gulf and Gulf of Oman. Two MPLNET lidars were deployed, co-located with 
AERONET Cimel sunphotometers. The synergy of the AERONET and MPLNET instruments was 
used to separate dust from cloud and retrieve dust vertical profiles during daytime conditions. 
 
 Figure 75 shows the available lidar sites in the northern hemisphere from different lidar 
networks constituting the WMO Global Atmosphere Watch (GAW) Aerosol Lidar Observation 
Network (GALION). There are two large lidar-observation gaps in desert-dust sources in northern 
Africa and the Middle East. East Asia is reasonably well monitored by lidar techniques.  
 
 The lidar at Zanjan has not been included in the graphical lidar and ceilometer database 
(http://www.dwd.de/ceilomap) developed by Werner Thomas (Thomas, 2012) and maintained by 
the German Weather Service (DWD). According to this map of lidar and ceilometer sites (Figure 
76), West Asia shows sparse data coverage, well below tht of North Africa and Europe. The two 
lidars marked on the map correspond to those deployed in the UAE during UAE2 in summer 2004 
but are not now in operation. 
 

 
 
 

Figure 75 - Distribution of stations available through cooperation between existing networks: the different networks are 
indicated by the colour of the dots: AD-NET violet, ALINE yellow, CISLiNet green, EARLINET red, MPLNET brown, NDACC 

white, REALM blue (after the GALION report, WMO, 2007) 
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Figure 76 - Map of lidars and ceilometers developed by Thomas (2012) available at http://www.dwd.de/ceilomap 
 
 
 
 

 
 

Figure 77 - Map of lidars and ceilometers in West Asia (http://www.dwd.de/ceilomap) 
 
 
 A CT25K ceilometer is run at Kuwait airport but this model cannot retrieve vertical aerosol 
backscatter and does not appear in the ceilomap. Concerning ceilometers, there is a significant 
contrast between Turkey, with a dense network of Vaisala CL31 ceilometers, and the West Asia 
countries, as can be seen in Figure 77. 
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B.1.2 Satellite observations 
 Most of the countries in West Asia use the SEVIRI-MSG sensor for monitoring dust storms. 
In some countries, MODIS Aqua/Terra (both images and quantitative AOD) are used but to a 
lesser extent, mainly for case analysis or for short-term studies of a few years (e.g. Amanollahi et 
al. (2011) in the Islamic Republic of Iran). NOAA-nn is used mainly for meteorological analysis. In 
Oman, Charabi and Gastli (2012) have used MISR to obtain a quantitative climatology of AOD 
oriented to feasibility of solar-power plant projects. The degree of utilization of aerosols/dust data 
from satellites is actually very low. In most cases, satellite information has an immediate use for 
weather forecasting. Satellite images of dust storms are used for illustrating analysed events in 
some scientific articles. Table 6 shows all the current satellite sensors providing aerosol and dust 
information. 

 
 

Table 6 - Satellite-borne aerosol and dust sensors and products 
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B.1.3 Modelling 
 According to the information obtained from the questionnaires and other sources 
concerning the use of dust models, the situation in each country is the following: 
 
Bahrain  
 The global NAPPS model (Westphal et al., 2004) is the only model used for both 
forecasting and case analysis. Only graphical outputs are used. 
 http://www.nrlmry.navy.mil/aerosol/#currentaerosolmodeling 
 
United Arab Emirates  
 The COSMO_ART aerosol model has been running at the National Centre of Meteorology 
and Seismology since November 2010. Main features: 0.0625° horizontal resolution, 41 vertical 
levels, 3 bins (1.5, 6.7 and 14.2 µm), 12 soil types and GRAALS radiation scheme. COSMO_ART 
is run in cooperation with DWD and the Karslruhe Institute of Technology (Germany) but seems 
not to incorporate a specific mineral-dust module: aerosol modelling consists only of secondary 
aerosols resulting from gaseous pollutant reactions. 
 
Islamic Republic of Iran  
 The DREAM8 Eta model has been run at the Islamic Republic of Iran Meteorological 
Organization (IRIMO) since 2012. Main features: 0.25° horizontal resolution, 28 vertical levels, 4 
bins. This implementation is a result of cooperation with the South East European Virtual Climate 
Change Centre (SEEVCCC), hosted by the Republic Hydrometeorological Service of Serbia. 
 
 The WRF/CHEM model is run by the Atmospheric Science and Meteorological Research 
Centre (ASMERC) in Tehran. Main features: 0.10° horizontal resolution, 28 vertical levels, four 
bins of aerosol particles. 
 
 The Geoinformatics Research Institute at the University of Tehran is developing the 
DuSNIFF model for dust forecasting based on remote-sensing information and air-mass 
trajectories.  
 
 Some analyses of dust storms in the Sistan region, using 25-year observations at Zabol 
meteorological station and artificial neural networks, have been performed in order to implement a 
statistical dust storm prediction system (Jamalizadeh et al., 2008). 
 
Kuwait  
 The HYSPLIT model has been used since early 2007. A PM10 emission algorithm was 
incorporated into a Lagrangian transport and dispersion model, described by Draxler and Gillette, 
2001.  
 
Oman  
 The global NAPPS model (Westphal et al., 2004) is the only model used for both 
forecasting and case analysis. Only graphical outputs are used. 
 http://www.nrlmry.navy.mil/aerosol/#currentaerosolmodeling 
 
 Forward trajectories from the 14-km resolution Oman Regional Model (Oman 
Meteorological Department) combined with RGB images from SEVIRI-MSG have been used for 
case analysis (Al-Yahyai and Charabi, 2012). 
 
 Forward trajectory calculation was used by Al-Yahyai and Charabi (2012) for dust storm 
forecast in some case analyses. 
 
Saudi Arabia 
 The Presidency of Meteorology and Environment has used the NAAPS global model, the 
BSC-DREAM8b regional model and multimode products from the SDS WAS NAMEE Regional 
Node for both forecasting and case analysis. DREAM-NMME-MACC has been used for case 
analysis. 
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 Some dust storm events were studied with the CARMA-dust model and MM5 weather data 
(Barnum et al., 2003). WRF-Chem, coupled with an aerosol chemistry component, was used by 
Kalenderski et al. (2013) to simulate various aspects of dust phenomena over the Arabian 
Peninsula and Red Sea during a dust event in January 2009. 
 
Turkey  
 The BSC-DREAM8b model has been run at the Turkish State Meteorological Service 
(TSMS) since July 2010 in cooperation with BSC, Spain. Main features: 1/3° horizontal resolution, 
24 vertical levels, 8 bins (0.1–10 µm).  
  
Qatar  
No information. 
 
 In summary, only two countries (Islamic Republic of Iran and Turkey) run appropriate 
regional dust models. In the case of ASMERC (Islamic Republic of Iran), the use of WRF-CHEM as 
a dust model for operational purposes does not seem to be the appropriate solution. The CHEM 
module associated with WRF has not been conceived and developed for dust but for chemical 
processes in air-quality issues, as is also the case in the UAE with the COSMO_ART aerosol 
model. Considering this circumstance and the fact that, WMO SDS-WAS NAMEE has recently 
made  a set of dust-model outputs available to West Asia countries, there are other solutions that 
are more interesting and effective for predicting dust storms. These are described in Section B.2.3 
(Recommendations on SDS activities in West Asia). 
 
 
B.1.4 Data exchange 
 Atmospheric dust-data exchange between institutions within the same country is usually 
limited to short-term activities or case studies. The exchange of information between countries is 
practically non-existent, at least in an organized and systematic way, leading to the need to 
establish a monitoring system for dust storm early warning. 
 
 
B.1.5 Application of SDS products and services 
 There are no specific user-oriented products and services for sand- and dust storms. Most 
National Meteorological or Hydrometeorological Services (NMSs) run classical NWP models.  
 
 
B.1.6 Capacity-building and training  
 Most countries are interested in general topics related to sand- and dust storms.  
 
 The Islamic Republic of Iran organized five courses/conferences on SDS in the period 
2010–2012: 
 
• Regional Seminar on SDS Management, University of Medicine Sciences and Health, 

Kermanshah (four days), 2012. 
 
• National Conference on SDS Management, Khorram Abad (four days), 2012. 
 
• Training Course on Sand and Dust Storms, IRIMO, Tehran, 10–13 October 2011. Topics 

were observation, monitoring, modelling and forecasting of SDS. The instructors were from 
WMO, Spain, Croatia and the host country. The participants were from the host country, 
Turkey, Iraq and some international organizations, as well as water-resources management 
and environmental departments and university students. 

• SDS International Conference, Ramin University, Ahwaz (four days), 2011. 
 
• Training Course to Combat Desertification and SDS Management for Iraq’s Experts, Ahwaz 

(15 days), 2010. 
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 Turkey has held three international workshops and training courses on SDS in the period 
2011–2012: 
 
• Training on Sand and Dust Storm (SDS), Erosion Preventing Techniques and Controlling 

Methods and Meteorological Services, SDS Forecast and Early Warning System, 22–
26 February 2011, Istanbul; organized by TSMS, General Directorate of Combating 
Desertification and Erosion (CEM) and General Directorate of Forestry (OGM). Participating 
countries/institutions: Egypt, Iran (Islamic Republic of), Iraq, Jordan, Mauritania, Qatar, 
Saudi Arabia, Syrian Arab Republic, Turkey, BSC (Spain), Spanish Meteorological Service 
(AEMET), EUMETSAT, University of Murcia (Spain).  

 
• Second Training Course on WMO SDS-WAS (Satellite and Ground Observation and 

Modelling of Atmospheric Dust), 21–25 November 2011, Antalya, Turkey, organized by: 
WMO, EUMETSAT, BSC, AEMET and TSMS. Participating countries/institutions: Algeria, 
Burkina Faso, Cape Verde, Chad, Egypt, Ethiopia, Iraq, Jordan, Kuwait, Morocco, Oman, 
Saudi Arabia, Senegal, Sudan, Turkey, Yemen, CSIC-Spain, University of Leeds (United 
Kingdom), METU-Erdemli (Turkey), ITU-Eurasia Institute of Earth Sciences (Turkey), 
SEEVCCC (Serbia), Directorate General of Meteorology and Air Navigation (DGMAN, 
Oman), BSC, Izaña Atmospheric Research Centre (Spain), AEMET, EUMETSAT, WMO. 

 
• Workshop on Meteorology, Sand and Dust Storm (SDS), Combating Desertification and 

Erosion, 26–28 November 2012, Ankara, Turkey; organized by: TSMS, CEM and OGM. 
Participating countries/institutions: Azerbaijan, Bahrain, Cyprus, Egypt, Iran (Islamic 
Republic of), Iraq, Kyrgyzstan, Kuwait, Libya, Morocco, Palestinian Meteorological Office, 
Saudi Arabia, Spain, Sudan, Tajikistan, Tunisia, Turkey, Uzbekistan. 

 
 The Centre of Excellence (CoE) for training in Satellite Meteorology in Muscat (Oman) has 
been in operation since 2006. It trains scientists from Middle East countries in the understanding 
and use of satellite data. Since its inception, it has trained more than 180 weather forecasters and 
experts in marine and water-resources management. Humaid Al-Badi, Chief of Remote Sensing, 
leads the work of the centre, on behalf of the Oman Department of Meteorology.  
 
 The CoE forms part of the WMO Coordination Group for Meteorological Satellites (CGMS) 
Virtual Laboratory for Education and Training in Satellite Meteorology (VLab), a global network set 
up by WMO for the use of data and products from meteorological and environmental satellites. 
Each centre is sponsored by one or more satellite-operating agencies. EUMETSAT sponsors the 
CoE in Muscat through various initiatives, including joint training events and training for locally 
based trainers. 
 
 Training at the CoE in Muscat takes place in cooperation with the Sultan Qaboos University 
and the main goals are to: 
 
• Address training needs in-remote sensing applications for Middle East countries, especially 

in satellite meteorology. 
• Establish and promote the concept of a VLab for training in meteorological remote-sensing 

applications by organizing training sessions and using VLab online training tools. 
• Establish a regional focus group that meets online to carry out weather briefings, seminars 

and related meetings on a regular basis. 
 
 More information about the CoE for Training in Satellite Meteorology can be found at 
http://www.met.gov.om:8888/coe/. 
 
 Some countries have shown interest in organizing SDS courses and meetings to enhance 
regional cooperation. There is also considerable interest in SDS monitoring and early warning in 
subjects ranging from observations (ground-based monitoring networks, satellite data access and 
analysis) to forecasting and modelling techniques (implementation of dust numerical models, 
modelling methodologies, data assimilation), as well as consultation meetings with potential users 
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to develop effective and helpful products. Other countries are interested in specific problems such 
as the prediction of haboobs.  
 
 
B.2 RECOMMENDATIONS FOR SDS ACTIVITIES IN WEST ASIA 
  
 In this section, a number of general and specific recommendations addressing all aspects 
that should be covered by an SDS-WAS Regional Node are presented. The recommendations 
have been made after careful analysis of information obtained about capabilities of observation, 
modelling, data exchange and capacity-building. The information available may be limited in some 
respects, so it would have to be taken into account when assessing these recommendations. 
 
This section has been structured as follows: 
 
B.2.1  In situ observation systems 
B.2.1.1  Visibility 
B.2.1.2  In situ particulate matter 
B.2.1.3  Aerosol optical depth with sunphotometers 
B.2.1.4  Lidars and ceilometers 
B.2.1.5  New or complementary developments 
B.2.2  Satellite observations 
B.2.3  Multi-scale/downscaling dust forecasting 
B.2.4  Dust-forecast validation 
B.2.5  Model reanalysis 
B.2.6  Regional collaboration mechanisms 
B.2.7  Data-exchange policy 
B.2.8  SDS products and services 
B.2.9  Training and capacity-building 
 
 
B.2.1 In situ observation systems 
 
B.2.1.1 Visibility 
 Visibility and present-weather information from SYNOP and METAR reports from countries 
of the region and neighbouring countries should be stored in a historical database. This database 
should be updated NRT in order to achieve the following goals: 
 
1. Produce NRT visibility data maps. Visibility from 3-hour reports or 30-minute METAR 

reports can be plotted in on a map with coloured markers (Figure 78) for dust nowcasting 
and early warning, as done by the SDS WAS-NAMEE Regional Centre (http://sds-
was.aemet.es/forecast-products/dust-observations/visibility). This might help forecasters 
who may know at a glance when and where there is reduced visibility owing to dust. Some 
filters using present weather and other meteorological parameters as relative humidity and 
precipitation must be used to disregard reduction of visibility from fog or heavy rain.  
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Figure 78 - NRT visibility indicated by coloured markers at the SDS-WAS NAMEE Regional Centre  
(http://sds-was.aemet.es/forecast-products/dust-observations/visibility) 

 
 
 

2. NRT visibility data can be used for model validation. Some authors have found an empirical 
relationship between visibility and PM10 or TSP (D’Almeida, 1986; Ben Mohamed et al., 
1992) (see Figure 79). Camino et al. (2012) proposed a new relationship based on 
simultaneous visibility/PM10 observations in the Canary Islands and the Sahel.  

 
 

 
 

Figure 79 - Experimental relationship between visibility and PM10 (D’Almeida, 1986) and TSP  
(Ben Mohamed et al., 1992) 

 
Extinction at surface level from dust models could be compared with horizontal visibility 
from SYNOP and METAR. The experience shows that useful METAR visibility information 
for model verification is constrained to days with severe reductions of visibility (below 
10 km), since most SYNOP and METAR stations do not report reduced visibility when it is 
beyond 10 km. Few SYNOP stations report accurate visibility conditions using distant 
references. Investigations are currently being conducted at the SDS-WAS NAMEE 
Regional Centre to implement NRT validation of modelled surface-dust concentration, using 
visibility data and some visibility-dust concentration empirical relationship (contact person: 
Enric Terradellas, eterradellasj@aemet.es). As an example of this application, see the 
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following validation case analysis made for the purpose of this study using visibility at two 
stations in Kuwait and Oman (Figure 80). 

 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

Figure 80 - Comparison of dust concentrations from seven different dust models with estimated PM10 from visibility 
observations at Kuwait International Airport and Seeb station in Oman during a dust intrusion from Mesopotamia captured 

by MODIS on 17 March 2002 at 17:00 UTC (contact person: Enric Terradellas, eterradellasj@aemet.es) 
 
 

3. Long-term monitoring of visibility reduction at SYNOP-station level or grouping the SYNOP 
stations regionally in areas with common soil-type or climatological characteristics may be 
an interesting activity. A first analysis would consist in obtaining an updated climatology of 
visibility similar to that obtained by Kutiel and Furman (2003), but expanded to the whole of 
West Asia on monthly and seasonal scales. Many stations started operations in the 1970s, 
so long-term analysis of more than 30 years can be performed. The number of days per 
month/year with visibility range below a threshold value (with some filter parameters to 
avoid reduction of visibility caused by atmospheric parameters other than dust, such as fog 
and heavy rain) would be an interesting first approach to indirectly determine dust trends. 
This information would constitute a simple but unique picture of long-term dust trends. 
 

 
 Global, daily averaged visibility data (averaged with a minimum of four daily SYNOP 
observations) can be obtained from the National Climatic Data Center (NCDC) Global Surface 
Summary of Day (http://www.ncdc.noaa.gov/). 
Please read ftp://ftp.ncdc.noaa.gov/pub/data/globalsod/readme.txt. 
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 Visibility data can be downloaded from the Integrated Surface Database (ISD) at NCDC 
(http://www.ncdc.noaa.gov/land-based-station-data/integrated-surface-database-isd).   
This database consists of global hourly and synoptic observations. ISD integrates data from more 
than 100 original data sources and comprises more than 20 000 stations worldwide. Currently, 
more than 11 000 “active” stations are updated on a daily basis.  
 
B.2.1.2 In situ particulate matter 
 As a preliminary approach to dust storm monitoring, dust-deposition gauges are highly 
recommended. This method measures dust-deposition rate and involves the passive deposition 
and capture of dust within a funnel-and-bottle arrangement. Data are usually collected over 
monthly periods and results are expressed in g/m2/month (i.e. the mass of dust deposited per 
square metre per month). This method enables determination of the relative “dustiness” of 
sampling locations. It does not provide data on dust concentrations or enable determination of dust 
levels from a particular event or source. Data from relatively dense networks of simple dust-
deposition gauges might provide a temporal and spatial climatology of breathable dust at surface 
level. It is necessary to install a regional network of dust-deposition gauges in each country, using 
standardized sampling and evaluation methodologies and a network topology that meets objective 
criteria, taking into account dust sources and pathways, and filling observation gaps. 
 
 High-volume samplers determine average dust concentrations. They comprise the 
collection of dust by drawing a constant flow rate of ambient air through a filter. Data are usually 
collected over a 24-hour period and results are expressed in µg/m3/24 h. A selective inlet may be 
fitted to a high-volume sampler to restrict the particle size being sampled (for example, to ensure 
only PM10 particles are sampled). 
 
 A few PM10 stations must be set up at rural sites, far away from direct impacts of 
anthropogenic sources in populated cities and industrial centres, in order to obtain aerosol 
background measurements which would be affected, basically, by mineral dust from local 
resuspension or transported from other regions.  
 
 Due to the complexity and vastness of West Asia, it is not possible in this report to give 
recommendations on specific geographic locations for rural background stations. On a national 
level, the most interesting areas covering every current and potential dust storm pathway should 
be explored. As a rough estimate, about 10% of PM10 stations must be located in rural 
background conditions. 
 
 The rural background PM10 stations network will provide useful information regarding the 
spatial and temporal variability of surface mineral-dust concentration and, at the same time, will 
help to distinguish and understand the different sources of particulate matter pollution measured by 
the air-quality networks of each country. More specifically, this network will permit: 
 
• Climatology of surface-dust concentration in hotspots at country level, thus climatology of 

surface-dust background (inhaled by population) 
 
• Improvement of knowledge about the origin of the daily exceedances of PM10 thresholds 

established by air-quality regulations in each country (e.g. 50 µg/m3 as a daily limit value of 
the European Union air-quality directive) by using back-trajectory analysis, available PM 
model outputs, satellite data and meteorological maps, is a mandatory activity of air-quality 
managers. This will allow the detection of high PM episodes caused by natural sources on 
a regional scale and the study of their seasonal and geographical variability (Escudero et 
al., 2007). From the point of view of air-quality managers, this information is important, 
since it permits quantifying the contribution of natural sources (mineral dust) in the 
exceedance of legal limits for PM10, apart from anthropogenic sources. Xavier Querol 
(xavier.querol@idaea.csic.es) is an international expert in this matter (Querol et al., 2008). 
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 In order to implement a quality-assurance system, periodical (at least once a year) manual 
calibrations with gravimetric PM10

 
high-volume samplers should be performed by co-located 

continuous PM10 analysers (such as PM10 tapered element oscillating microbalance and PM10 
Betabeta-attenuation analysers), as recommended by Rodríguez et al. (2012). A regional quality-
assurance centre providing homogenized and standardized methodologies and quality-
control/quality-assurance protocols should be implemented. For detailed advice on this subject, 
please contact Sergio Rodriguez (srodriguezg@aemet.es).  
  
 Receptor modelling techniques based on principal component analysis and subsequent 
multilinear regression analysis must be applied to databases for source-apportionment analysis at 
each sampling site, following the methodology proposed by Thurston and Spengler (1985). Xavier 
Querol (xavier.querol@idaea.csic.es) and Andrés Alastuey (andres.alastuey@idaea.csic.es), 
among other experts, have wide experience in this technique applied to surface aerosol 
measurements (Querol et al., 2008). 
 
 Long-term surface-dust concentration (e.g. PM10) in rural sites could be used in offline 
model validation. Figure 81 is an example of PM10 validation of the NMMB/BSC-Dust model 
performed using daily data from in situ African Monsoon Multidisciplinary Analysis (AMMA) stations 
in the Sahel for the period 2006–2008 (Cuevas et al., 2012). This validation permits knowledge of 
model performance throughout the year. Similar analyses should be performed for current and 
future dust models.  
 

 
 

Figure 81 - Daily comparison between simulated PM10 with NMMB/BSC-Dust model and in situ PM10 data at AMMA 
Cinzana and Banizoumbou stations in the Sahel for the period 2006–2008 (after Cuevas et al., 2012) 

 
  
 
 Regarding in situ PM observations, a specific recommendation is made for the 
implementation of a marine boundary layer observatory in the Gulf region for the analysis and long-
term monitoring of dust deposition impacts over the sea. As shown in Figure 67 (Section A.3), 
there is a clear lack of marine observations in the Gulf and Arabian Sea. A marine observatory is of 
great importance for marine biochemistry and climate issues. The marine observatory might be 
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implemented under the auspices of the Regional Organization for the Protection of the Marine 
Environment (ROPME). 
 
Contact persons: 
Layla Al-Musawi 
ROPME 
E-mail: l.almusawi@ropme.org 
and 
Hassan B. Awad 
ROPME 
E-mail: hbawad@ropme.org 
 
 
B.2.1.3  Aerosol optical depth with sunphotometers 
 There are clear gaps concerning sunphotometers with regard to dust hotspots and 
pathways as analysed in Sections A.2.1 and A.2.6. Figure 82 shows locations of desirable new 
AERONET stations in a first phase of sunphotometer deployment.  
 
 

  
 

Figure 82 - Map of active AERONET stations (red circles) and proposed new AERONET stations (some of the former 
AERONET stations) (blue stars) 

 
 
 
 A preliminary recommendation of new AERONET sites, which will need the consensus of 
experts, is the following (Figure 82): 
 
• Re-start operations at the following former AERONET sites: 

 
-  Kuwait University, Khalidiyah campus  
-  Bahrain (re-start operations in the most convenient free-horizon site) 
-  Dhadnah (UAE) 
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• Possible new AERONET sites chosen for the geographical location of dust storm pathways 
and considering the topology of the regional network: 
 
-  Arar (northern Saudi Arabia) 
-  Najran (south-western Saudi Arabia) 
-  Somewhere in Empty Quarter (Saudi Arabia): not indicated on the map 
-  Dayr az Zawr (eastern Syrian Arab Republic) 
-  Mosul (northern Iraq) 
-  Baghdad (central Iraq) 
-  As Smawah (southern Iraq) 
-  Faud, Dhahirah (Oman) 
-  Bani Bu Hassan (Oman) 
-  Ahvaz, Khuzestan (south-western Islamic Republic of Iran)  
-  Zabol (preferable) or Zahedan (Sistan basin, eastern/south-eastern Islamic Republic of 
    Iran) 
-  Tehran (Islamic Republic of Iran) 

 
 

 The proposed AERONET network topology will assure continuous monitoring of dust 
hotspots and impacted areas with a minimum number of stations. Special interest has been paid to 
the north-west to south-east dust corridor from eastern Syrian Arab Republic/northern Iraq to north-
eastern Oman passing over Kuwait, Bahrain, Qatar, UAE, eastern Oman and the Gulf Sea. Dust 
transport from Saudi Arabia and southern Islamic Republic of Iran is also monitored. As a 
complementary goal, this network might also be used to monitor aerosols from gas flares, 
refineries and industrial combustion.  
 
 The establishment of this network will not be easy and will need to be taken step by step. 
The first important issue is that AERONET photometers need to be calibrated every 12 months and 
data processing is performed centrally at the AERONET headquarters at GSFC 
(http://aeronet.gsfc.nasa.gov). 
 
 The AERONET calibration structure is complex and costly because it involves several 
procedures:  
 
• Annual photometric calibration of field instruments (AERONET requirement). Full calibration 

of a station photometer takes at least two months by intercomparison with a master 
instrument. Master instruments are managed by AERONET or by associated calibration 
centres. 

 
• Radiance calibration with integrating sphere in a darkroom.  
 
• The master instrument calibration is performed every three months at a high mountain 

station with pristine skies, using the Langley method.  
 
• Integrating spheres are calibrated against a standard reference sphere from NASA, using a 

strict protocol. 
 
 Since station instruments must be calibrated on an annual basis and the calibration takes a 
minimum of two–three months, plus shipment time and, in some countries, considerable additional 
time for customs clearance (export and import), the actual operation of an instrument is really 
limited to seven–eight months per year. To avoid this limitation, it is recommended to have an 
exchange instrument for every two or three station instruments. Using instrument rotation, the 
continuity of each station (almost 100%) throughout the year can be assured. This is why a 
regional AERONET network is proposed. In this case, a couple of additional instruments could be 
used as masters, which could be calibrated in AERONET qualified calibration centres, and then 
perform one or two intercomparisons per year (in autumn or winter) of station instruments to 
transfer the calibration. It seems unrealistic to send a large number of instruments individually 
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every year to an AERONET calibration centre in Europe or the USA. On the other hand, the 
creation of a regional AERONET network will require expert and instrument operator training with 
courses related to the installation, operation, maintenance, and data evaluation of Cimel 
photometers. The degree of knowledge in different technical subjects will much depend on the 
degree of technical responsibility the regional network will acquire. The estimated price of a full 
Cimel sun photometer (the only instrument accepted by AERONET) is about US$ 40 000. 
 
 International experts in AERONET calibration and regional AERONET networks are the 
following: 
 
• AERONET: GSFC, USA (http://aeronet.gsfc.nasa.gov/). Contact person: Brent Holben 

(Brent.N.Holben@nasa.gov) 
 
• PHOTONS: CNRS-University of Lille, France (http://loaphotons.univ-lille1.fr/), network 

associated with AERONET. Contact person: Philippe Goloub (philippe.goloub@univ-
lille1.fr) 

 
• RIMA: University of Valladolid, Spain (http://www.rima.uva.es/), network associated with 

AERONET. Contact person: Angel de Frutos (angel@goa.uva.es) 
 
• PHOTONS and RIMA use the Izaña Atmospheric Observatory (AEMET, Spain, 

http://aemet.izana.es) as absolute sun calibration centre for AERONET masters. Contact 
person: Emilio Cuevas (ecuevasa@aemet.es). The experience of PHOTONS and RIMA as 
regional networks would be interesting in this proposal.  

 
Experts in the region operating instruments: 
 
Hamid Khalesifard 
Department of Physics 
IASBS 
Zanjan, Islamic Republic of Iran 
E-mail: khalesi@iasbs.ac.ir 

 
Georgiy L. Stenchikov 
Division of Physical Sciences and Engineering 
KAUST 
Saudi Arabia 
E-mail: georgiy.stenchikov@kaust.edu.sa 

 
Naif M. Al-Abbadi  
Energy Research Institute  
KACST 
Riyadh 11442, Saudi Arabia  
E-mail: nabbadi@kacst.edu.sa  

 
Hala Al-Jassar 
Physics Department  
Kuwait University 
E-Mail: hala@kuc01.kuniv.edu.kw  

 
Baris Salihoglu 
Institute of Marine Sciences (METU) 
Erdemli MERS’N 
E-mail: baris@ims.metu.edu.tr  
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Majed H. Radhi 
Ministry of Environment  
Baghdad, Iraq 
E-mail: majed.radhi@gmail.com                            
  
 
 The experience of regional experts could help technicians and operators of new AERONET 
stations.  
 
 There are other alternatives for monitoring AOD, although none of them achieves the 
degree of optimization of AERONET for NRT monitoring and the determination of aerosol optical 
properties with inversion techniques. For long-term, high-accuracy AOD measurements (also 
providing NRT data), we would recommend the WMO GAW precision filter radiometer 
(http://www.pmodwrc.ch/worcc/). Contact person: Christoph Wehrli 
(Christoph.Wehrli@pmodwrc.ch). 
 
 
B.2.1.4  Lidars and ceilometers 
 Lidars provide quantitative physical parameters of aerosol and dust vertical distribution. 
Various aerosol lidar techniques have been developed during the past 40 years or so. A 
comprehensive description of the currently available methods is presented in Annex A of The 
WMO GAW/GALION programme report (WMO, 2007). The most important lidar techniques are: 
backscatter lidar, Raman lidar, depolarization lidar and high spectral resolution lidar. These 
methods can be applied at either one or multiple wavelengths (multiwavelength backscatter lidar, 
multiwavelength Raman lidar). Height-time displays of the range-corrected signal are sufficient to 
provide an overview of the measurement situation in terms of the evolution of the planetary 
boundary layer (PBL), lofted aerosol layers and cloud distributions, which have operational 
applications (aviation, weather forecast) and research applications. As stated by Mona et al. 
(2012), lidars permit analysis of the intrusion of desert dust into the PBL and mixing processes of 
dust with other aerosol types, as well as the transport of dust to upper levels.  Lidar measurements 
in combination with other techniques, such as sunphotometry, are ideal for investigating certain 
aspects of atmospheric composition, transport, deposition of dust and dust–cloud interaction, 
including cloud-formation processes.  
 
 Lidars are advanced, expensive instruments (>US$ 100 000) that require specially trained 
staff to operate them, as well as dedicated personnel to retrieve vertical profiles with data-inversion 
algorithms. Maintenance costs are also high. Compared with sunphotometers, the lidar technique 
is one order of magnitude more expensive and requires much more experienced specialists for 
both operation and data processing.  
 
 According to existing capabilities and sites of AERONET stations, a proposal for a lidar 
network is given in Figure 83. This is a first approach, which needs further and more detailed 
discussions with interested institutions to ensure the necessary resources for implementing a lidar 
programme. 
 
 A lidar network similar to that proposed for sunphotometers would be the ideal scenario and 
should be the goal in the coming years. Given the enormous complexity of the lidar technique, its 
high cost and the level of development of this technology in the region, however, caution is 
necessary when proposing lidar sites. For this reason, a first recommendation is to strengthen 
what has already been achieved. Support to the IASBS group that has designed, developed and 
operated two lidars in Zanjan (Islamic Republic of Iran) is therefore highly recommended. It is a 
unique lidar facility in the region and must achieve and ensure future continuous operation. Aside 
from the importance of the measurements taken from these lidar sites, the expertise provided by 
the IASBS group is also highly valued. 
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Contact person: 
Hamid Khalesifard 
Department of Physics 
IASBS 
Zanjan, Islamic Republic of Iran 
E-mail: khalesi@iasbs.ac.ir 
 
 
 

 
Figure 83 - Proposed lidar sites in West Asia 

 
 
  
 A second recommendation for a lidar site would be Kuwait, strategically located in the dust 
outflow from Iraq, and in the pathway of west-east-west dust clouds. Kuwait would be a key station 
of great interest for both operational and research activities. This lidar programme might be a 
collaborative exercise between a university/research institute group and the Kuwait Meteorological 
Centre. A potential site could be at Kuwait University, where an AERONET station was in operation 
until August 2012. 
 
Contact person: 
Hala Al-Jassar 
Physics Department  
Kuwait University 
E-mail: hala@kuc01.kuniv.edu.kw  
  
 The third recommendation concerns Saudi Arabia where two AERONET stations are in 
operation: 
 
KAUST campus: this station could monitor intercontinental dust transport, especially dust plume, 
over the Red Sea. 
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Contact person: 
Georgiy L. Stenchikov 
Division of Physical Sciences and Engineering 
Division of Mathematics, Computer Sciences, and Engineering 
KAUST 
E-mail: georgiy.stenchikov@kaust.edu.sa  
 
Solar Village at KACST 
 
Contact person: 
Naif M. Al-Abbadi  
Energy Research Institute  
KACST  
E-mail: nabbadi@kacst.edu.sa  
 
 In a second phase, and co-located with existing AERONET stations, two additional lidar 
stations could be set up in UAE and Oman, respectively. These stations, located in the dust 
corridor beginning in northern Iraq, could monitor dust transport along the Gulf to the Arabian Sea 
and between the Arabian Peninsula and Islamic Republic of Iran. 
 
 Initiatives from other groups of countries in the region would be most welcome and should 
be considered in a medium-term dust-monitoring plan. A lidar programme requires a commitment 
and a significant involvement of research groups, without which it would not be possible to 
implement the technique. 
 
 WMO (2007) provides a detailed technical description of lidar programmes and international 
lidar networks. See also the WMO-GAW Aerosols Programme  
(http://www.wmo.int/pages/prog/arep/gaw/aerosol.html). 
 
 The contact person who could advise West Asia countries on implementation of lidars and 
assist in training specialists is:  
 
Gelsomina Pappalardo 
Chair of GALION WG 
Consiglio Nazionale delle Ricerche-Instituto di Metodologie per l’Analisi Ambientale 
Potenza, Italy 
Tel.: + 39 0971 427265 
gelsomina.pappalardo@imaa.cnr.it 
 
 Within the complex world of lidars, we would recommend the simplest approach that could 
be  deployed as a first step to implementation. This technique is a combination of a micropulse 
lidar, as recommended in MPLNET (Welton et al., 2001), consisting of low-cost, eye-safe, 
automated 532-nm backscatter lidars, with an AERONET sunphotometer (Holben et al., 1998). In 
this approach, the sunphotometer provides accurate values of AOD, which is an important 
constraint for the lidar solution. The integral lidar-derived extinction profile must match the 
photometer-derived optical depth. This would allow an estimation of the column lidar ratio. Despite 
remaining uncertainties of about 20% in the extinction coefficients because of possible variability of 
the lidar ratio with height, and the fact that expected errors may be considerably larger when a 
mixture of different aerosol/clouds layers is present, this technique could provide an NRT vertical 
distribution of dust and would permit a first analysis of dust intrusions in the vertical. 
 
 This technique is being implemented by some groups at African sites with frequent Saharan 
dust intrusions. The LOA group (CNRS-University of Lille) has implemented a long-term Cimel 
lidar, AERONET cimel sunphotometer and lunar photometer in Dakar, Senegal. The Izaña 
Atmospheric Research Centre (AEMET) and the National Institute of Aerospace Technology of 
Spain are implementing a long-term MPLNET-lidar, AERONET Cimel sunphotometer and lunar 
photometer at Santa Cruz de Tenerife (Canary Islands, Spain). Both groups are working together 
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to set up an NRT lidar-photometer mini-network in West Africa. Their experiences in places with 
similar environmental conditions to those in West Asia may be helpful for groups initiating these 
techniques. 
 
Contact persons: 
Philippe Goloub (philippe.goloub@univ-lille1.fr), LOA (CNRS-University of Lille, France) 
 
Alberto Berjon (aberjona@aemet.es), Izaña Atmospheric Research Centre (AEMET, Tenerife, 
AEMET, Spain) 
 
 A novel aspect of lidar investigation of desert dust is its application for societal benefits and 
risk management. This moves the lidar community from science research towards the potential 
applications communities. The review article by Mona et al. (2012) deals with these and other 
aspects of lidar developments for desert-dust monitoring. Operation of, and research with, lidars is 
still a complex issue, however, and is basically still within the framework of research. The 
implementation of lidars in West Asia will therefore require close cooperation between universities, 
research institutes and NMSs. 
 
 Besides research-oriented lidar networks, a large number of ceilometers are distributed 
worldwide. Ceilometers (often called low-power lidars) are robust systems for continuous 
operation. They can provide useful information about the aerosol layers which can be used for 
operational dust monitoring and forecasting. Ceilometers are single-wavelength backscatter 
instruments and are relatively inexpensive (∼US$ 20 000) that most airports use for cloud-base 
monitoring. Many NMSs, as well as airports, operate ceilometers networks, which provide fully 
automatic and continuous atmospheric measurements of, for example, cloud-base and PBL height 
but also profiles of atmospheric aerosol backscattering. The involvement of NMSs in gradually 
extending the use of ceilometer use to SDS activities is obvious and also relatively easy and 
inexpensive. A summary of the capabilities of ceilometers is provided by Thomas (2012). 
 (http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECO-
2012/Session5/K5_02_Thomas_Ceilometers_Lidars.pdf).  
 
 As Thomas states, a global operational network for aerosol monitoring could, at a first 
stage, consist of easy-to-use and continuously measuring ceilometers, operated together with sun-
tracking sunphotometers and lidar anchor stations equipped with aerosol lidars for the calibration, 
evaluation and quantification of ceilometer data. He describes a number of existing algorithms for 
retrieving aerosol parameters from different ceilometers. A semi-operational retrieval code for 
aerosol parameters is available for the Jenoptik CHM15K instrument of the DWD (Flentje et al., 
2010). These algorithms may be shared with other operators using this instrument in their 
networks. 
 
 The Vaisala CL31 has been compared with a Raman lidar, which basically implies the 
availability of a retrieval code for this instrument (McKendy et al., 2009). The newer Vaisala CL51 
was recently compared with an MPL in Spain during Saharan dust-intrusion events, as described 
by Hernandez et al. (2011). 
 
 The gradual transition to new-generation modern ceilometers which provide, at the 
moment, only semi-quantitative information of dust-layer profiles, is simple. As NMSs replace the 
old ceilometers installed in airports by modern ones, data may be used for both operational 
aeronautic purposes and SDS activities. A pilot project could be initiated with the use of the 
existing, dense, new-generation ceilometer network in Turkey for SDS activities. Evaluation and 
quantification of the ceilometer data can be carried out if the ceilometer is operated together with 
sun-tracking sunphotometers and lidar anchor stations equipped with aerosol lidars. Ceilometers 
have clear potential in West Asia for SDS monitoring and characterization. 
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Contact person:  
Werner Thomas 
Hohenpeißenberg Meteorological Observatory 
Department of Research and Development 
Deutscher Wetterdienst  
Germany 
E-mail: Thomas@dwd.de  
 
B.2.1.5  New or complementary developments 
 
Total-sky cameras and webcams 
 
 NRT total-sky cameras and webcams might prove useful in remote sites for dust 
nowcasting. As demonstrated in UAE2, total-sky cameras might be useful for NRT dust tracking, as 
they can provide images every few minutes (1–5 minute intervals). National forecasting centres 
might therefore perform an SDS NRT watch with a network of total-sky cameras. 
 
 Webcams have been used to study dust storm formation and development. They are 
normally oriented to directions in which dust storms originate. An interesting experience of dust 
monitoring with webcams set up by the US Geological Survey at Mesa Verde (Colorado) can be 
visited at http://www.nps.gov/meve/naturescience/dustmonitoring.htm. 
 
An example of dust-intrusion detection with a total-sky camera is given in the following link: 
http://izana.aemet.es/index.php?option=com_content&view=article&id=184&Itemid=159&lang=en. 
 
 Meteorological radiosondes can also be used to characterize dust layers. In combination 
with lidars or ceilometers, radiosondes can provide insight into meteorological variables (wind 
speed/direction, temperature and humidity) associated with the vertical structure of dust layers.  
 
 Ganor et al. (2010) performed a synoptic classification of lower-troposphere profiles for dust 
days. Vertical profiles of temperature, wind components and humidity for days with dust and no 
dust were compared and analysed in order to identify features accompanying dusty conditions. 
 
 Andrey et al. (2013) analysed the Saharan air layer over the North Atlantic in summertime 
and reported that it was normally confined between two temperature-inversion layers (at 1 km and 
6 km altitude, respectively) with higher relative humidity in this interval compared to non-Saharan 
conditions. This pattern permits a backward reanalysis of radiosondes to be performed for 
obtaining dust climatologies. 
 
 Another good example of the utilization of typical meteorological sensors in dust monitoring 
is radar. Bluestein et al. (2004) documented the behaviour of several dust-devil vortices within a 
1.5 km range, using a mobile Doppler radar. A C-band Doppler polarimetric radar installed in the 
UAE has captured topographically channelled dust intrusions, allowing a high temporal resolution 
and 3D analysis (Roelof Bruintjes, project scientist at the US National Center for Atmospheric 
Research and President of Advanced Radar Corporation, personal communication). 
 
 Inexpensive hand or automatic (with sun-tracker) sunphotometers and radiometers are now 
being implemented for dust monitoring and characterization in specific activities. For example, they 
can be used in mobile units in field campaigns for solar-power plant feasibility studies or for air-
quality assessment analysis. Other “inexpensive” sensors could be used for NRT monitoring along 
motorways or high-speed railways. They constitute valuable instruments when it is not possible to 
install costly equipment. 
 
 
B.2.2   Satellite observations 
 Many satellite-based sensors are devoted to dust and aerosol monitoring (see Table 6 in 
Section B.1). 
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 The best sensor for continuous monitoring of dust storms is without doubt SEVIRI-MSG. Its 
high spatial resolution is complemented with a unique, powerful capacity, which is a very high 
temporal resolution (frames every 15 minutes now and soon to be every 10 minutes). While 
SEVIRI-MSG is the ideal satellite sensor for dust nowcasting at the moment, it does not provide 
reliable quantitative AOD. Research is being conducted with SEVIRI-MSG products aimed at 
obtaining quantitative and operational dust information (Klüser and Schepanski, 2009) and inferring 
dust-cloud movements from animated images (Genkova et al., 2008), with promising results.  
  
 The UK Met Office MSG dust product shows an estimation of DOD retrieved from the 
empirical relationship between SEVIRI infra-red (10.8 µm) radiance and AOD at 550 nm. It is 
generated by transforming original retrievals to regularly spaced grids (0.18°) using a simple 
averaging method. An example at the SDS-WAS NAMEE Regional Centre can be found at 
http://sds-was.aemet.es/forecast-products/dust-observations/msg-2013-u.k.-met-office. 
 
Concerning the potential use of SEVIRI-MSG images, the contact person is:  
Jochen Kerkmann 
Satellite Meteorologist, Training Officer, EUMETSAT 
E-mail: jochen.kerkmann@eumetsat.int 
 
The CoE for Training in Satellite Meteorology in Oman, in collaboration with EUMETSAT 
 
Contact person: 
Humaid Al-Badi 
Chief of Remote Sensing and Studies Section 
DGMAN focal point 
DGMAN, Oman 
E-mail: h.albadi@gmail.com 
 
 MISR space-based aerosol products provide complementary information (Kalashnikova and 
Kahn, 2008). MISR is excellent for obtaining climatologies for dust sources and pathways. MISR 
normally overestimates AOD at low AOD range and underestimates AOD at high AOD range over 
bright surfaces (Kalashnikova and Kahn, 2008). MODIS and SeaWiFS are excellent for obtaining 
quantitative AOD over the oceans. CALIOP, on board the CALIPSO platform, and PARASOL 
(polarization and anisotropy of reflectances for atmospheric science coupled with observations 
from a lidar), also on board CALIPSO, provide aerosol backscatter and extinction coefficient 
profiles. Data from these space-based sensors are available in the corresponding databases. They 
can be used for case analysis and performing dust climatologies for West Asia. 
 
Recommendations on satellite information can be summarized as follows: 
 
For quick graphical aerosol imagery from different satellite sensors, for both current day and past 
days, a comprehensive database is provided by the US Naval Research Laboratory/Monterey 
satellite products web-page: 
http://www.nrlmry.navy.mil/aerosol/#satelliteanalyses. 
 
Other links to NRT images are the following: 
  
MODIS: http://rapidfire.sci.gsfc.nasa.gov/realtime/  
or the following link where several sites can be accessed: 
https://earthdata.nasa.gov/data/near-real-time-data/rapid-response. 
 
The latest available animation of SEVIRI-MSG can be found at: http://sds-was.aemet.es/forecast-
products/dust-observations/msg-2013-eumetsat. 
 
SeaWiFS: http://oceancolor.gsfc.nasa.gov/cgi/pcgac9000.pl 
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 Long-term reanalysis from satellite-based observations of dust hotspots, specific stations 
(e.g. AERONET or SYNOP stations), as well as of sensitive dust-impacted areas (cities, industrial 
facilities, airports) will quickly increase the knowledge of the spatial-temporal variability of dust 
storms. The use of the Giovanni application is highly recommended for this type of analysis. 
Giovanni is a web-based application, developed by GES DISC, that provides a simple and intuitive 
way to visualize, analyse and access vast amounts of Earth science remote-sensing data without 
having to download them (http://disc.sci.gsfc.nasa.gov/giovanni). If so required, however, data can 
also be downloaded in different formats (ASCII, HDF, netCDF, KMZ, JPG). 
For dust/aerosol quantitative analysis, a huge aerosol and dust database is freely accessible at the 
World Data Centre for Remote Sensing of the Atmosphere (WDC-RSAT), 
(http://wdc.dlr.de/data_products/AEROSOLS/). 
 
 Satellites can play a key role in monitoring soil conditions. For example, Tsvetsinskaya et 
al. (2002) proposed to relate soil groups (based on the United Nations Food and Agriculture 
Organization soil classification) and rock types (based on US Geological Survey maps) to MODIS-
derived surface-albedo statistics. That was a first step towards incorporating the observed spatial 
variability in surface reflective properties into climate models. This is especially important in areas 
such as Mesopotamia, where dramatic changes in soil use and characteristics are taking place, 
which, in turn, might influence the frequency and intensity of dust storms. Shi et al. (2013) used the 
MODIS-land-cover type product to investigate the surface-vegetation distribution and quantify 
surface-dust emissions in Saudi Arabia. Thus, soil specialists should work together with the 
satellite-user community and initiate joint projects in dust sources, since West Asia has been 
poorly studied in this respect. 
 
 
B.2.3   Multi-scale/downscaling dust forecasting 
 The modelling structure proposed for West Asia consists of a three-level nesting scheme 
shown in Figure 84. In order to develop a nested global-regional-mesoscale system, it is 
recommended that a portal for collection/provision of global and wide regional modelling outputs be 
developed by the future SDS-WAS Regional Centre for West Asia. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 84 - Conceptual scheme of the three levels of dust-model nesting for the SDS-WAS West Asia Regional Node 
 
 
B.2.3.1 Global models 
  Daily global model data could be provided by organizations/initiatives such as, for example, 
the International Cooperative on Aerosol Prediction (ICAP). Several institutions are participating in 
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the intercomparisons with their own models: ECMWF (Europe), Japan Meteorological Agency, 
NASA (USA), US Naval Research Laboratory and the US National Oceanic and Atmospheric 
Administration (NOAA) National Centers for Environmental Prediction (NCEP). Either an ICAP 
median of such model outputs or data from a particular global model group should be secured by 
the future SDS-WAS Regional Centre for West Asia through a special agreement with data 
providers. Nowadays, global models have a spatial resolution of ~50 km, which will soon be 
increased to ∼25–30 km. 
 
 The SDS-WAS NAMEE Regional Centre also provides graphical and numerical outputs 
from the ECMWF Monitoring Atmospheric Composition and Climate (MACC) model, the UK Met 
Office Unified Model (MetUM), GEO-5 (NASA) and the National Geospatial Advisory Committee 
(NGAC) of the USA (see Table 7) through: http://sds-was.aemet.es/forecast-products/dust-
forecasts.  
 
B.2.3.2 Regional models 
 In the next nesting step, global model data should be used for the initial and boundary 
conditions in a large, regional dust-model area to feed regional models. Ideally, these models, 
ideally, should have ∼10–15 km resolution. Over the last 20 years, a modelling community, 
specifically focused on dust models, has developed dust-source specification, dust-emission 
parameterization, radiation-dust and dust-cloud interaction parameterizations, etc., building up a 
robust dust-forecasting system. Fortunately, many of these regional models running over the West 
Asia geographical domain are currently available through the SDS-WAS NAMEE Regional Centre. 
In particular, it offers dust-forecasts outputs that are generated by different regional numerical 
models, both graphically and numerically, at: 
 http://sds-was.aemet.es/forecast-products/dust-forecasts.  
 
 The availability of these products is the result of collaboration among a number of NMSs 
and research centres. 
 
 The global and regional dust models currently providing numerical outputs for the NAMEE 
region through the SDS-WAS Regional Centre are the following: 

 
 

Table 7 - List of dust-forecasting models available through the SDS WAS NAMEE Regional Centre at 
 http://sds-was.aemet.es/forecast-products/dust-forecasts 

 
Model Institution Type Output PI or contact 
GEOS-5 
Colarco et al. (2010) 

NASA Global Numerical and 
graphical 

Da Silva Colarco 

MACC-ECMWF 
Morcrette et al. (2009) 
Benedetti et al. (2009) 

ECMWF Global Numerical and 
graphical 

Morcrette/Benedetti 

MetUM 
Woodward (20011) 

UK Met Office Global Graphical Walters 

NGAC 
Lu et al. (2010) 

NCEP Global Numerical and 
graphical 

Lu 

BSC-DREAM8b V2.0 
Pérez et al. (2006)  
Basart et al. (2012) 

BSC-CNS Regional Numerical and 
graphical 

Baldasano 

DREAM-NMME-MACC 
Nickovic et al. (2001) 
Xie et al. (2008) 

SEEVCCC Regional Numerical and 
graphical (1 day 

delay) 

Pejanovic 

NMMB/BSC-Dust 
Pérez et al. (2011) 
Haustein et al. (2012) 

BSC-CNS Regional Numerical and 
graphical 

Baldasano 

Median multimodel 
Ensemble 

SDS WAS RC Regional Numerical and 
graphical 

Terradellas 
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Contact persons: 
 
GEOS-5 (NASA): Peter R. Colarco (peter.r.colarco@nasa.gov) and Arlindo Da Silva 
(arlindo.dasilva@nasa.gov)  
 
MACC (ECMWF): Angela Benedetti (Angela.Benedetti@ecmwf.int) and Jean-Jacques Morcrette 
(morcrette@ecmwf.int) 
 
MetUM (UK Met Office): David Walters (david.walters@metoffice.gov.uk), Jane Mulcahy 
(jane.mulcahy@metoffice.gov.uk) and Malcom E. Brooks (malcolm.e.brooks@metoffice.gov.uk). 
 
NGAC (NCEP): Sarah Lu (sarah.lu@noaa.gov) 
 
BSC-DREAM8b V2.0: Jose María Baldasano (Jose.baldasano@bsc.es) 
 
DREAM-NMM-MACC: Goran Pejanovic (goran.pejanovic@hidmet.gov.rs)  
 
NMMB/BSC-Dust: Jose María Baldasano (Jose.baldasano@bsc.es) 
 
Median multimodel ensemble (SDS-WAS NAMEE Regional Centre: Enric Terradellas 
(eterradellasj@aemet.es) 
 
 The availability of this set of specialized dust-prediction models constitutes an 
unprecedented breakthrough for the international community and particularly for the countries of 
West Asia, which will have six digital models outputs and an ensemble available to add to the 
current dust-forecasting capabilities of each country. Dust storms caused by shamal, passage of 
fronts and large convective processes are well predicted by these models. They should expand 
their geographic domain eastward, however, in order to properly include dust sources and 
pathways over Afghanistan and Pakistan, which, as seen in Section A.2.6 (Climatology in West 
Asia) are important. 
 
 On the regional scale, as in the case of global modelling, either a median or a separate 
model product could be used. A good candidate for median regional forecasts are the already 
existing daily data from the SDS-WAS NAMEE Regional Node but the current domain should also 
either be centred on the West Asia region or extended to the east. An alternative to the median 
region forecast is that one or more well-established dust-modelling groups provide(s) regional 
forecasts through a special agreement.   
 
 
B.2.3.3 Mesoscale/local (high-resolution) models 
 Dust storms associated with small-scale convective processes in space and time, such as 
haboobs and cold cold-air downburst storms (see Section A.2.2), cannot be captured by either 
global or regional models, given the small size of these meteorological processes, and because 
most of these models have not implemented adequate parameterizations of Mesoscale, 
convective, cloud-resolving processes, low-level jets, etc. Hence, a third nesting level consists of 
mesoscale/local dust models fed by data from (a) regional-scale model(s). Such mesoscale 
modelling systems, which include non-hydrostatic atmospheric processes, should be downscaled 
to resolutions of ∼1–3 km in order to resolve both atmospheric driving conditions and dust-soil 
sources. Such models will complement global and regional models. The spatial resolution of 
mesoscale/local dust models will depend largely on the region to be covered and available 
computational resources. 
 
 There are a couple of regional models currently running for the West Asia region, but in a 
window centred over North Africa, that can easily be upgraded for West Asia as high-resolution 
models on an ad hoc basis: 
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• NMM-DREAM8: the original DREAM with an eight particle-size bin model incorporated into the 
WRF system. It runs at the Serbian NMS (http://www.seevccc.rs/?p=8) with MODIS AOD data 
assimilation from MACC (DREAM8-NMME-MACC). This model achieved one of the best 
monthly skill performances for the 2012 dust season in comparison with other SDS-WAS 
models.  
Contact person: 
Goran Pejanovic (goran.pejanovic@hidmet.gov.rs) 
 

• NMMB/BSC-Dust: developed at the BSC (http://www.bsc.es/earth-sciences/mineral-
dust/nmmbbsc-dust-forecast). It uses advanced dust-parameterization physics for dust 
emission, convective vertical transport and wet in- and below-cloud deposition. This model can 
be run in global or regional mode.    
Contact person:  
Jose M. Baldasano (jose.baldasano@bsc.es) 

 
 Two global aerosol models with graphical dust outputs (normally AOD and surface dust 
concentration) are currently available for West Asia countries: 
 
• NAAPS: http://www.nrlmry.navy.mil/aerosol/#currentaerosolmodeling 
 
• MACC: http://www.gmes-atmosphere.eu/d/services/gac/nrt/nrt_opticaldepth 
 

MACC includes an on-line verification plots against AERONET observations at:  
http://www.gmes-atmosphere.eu/d/services/gac/verif/aer/nrt/ 

 
 In many cases, mesoscale dust storms, which occur frequently in West Asia, can be 
simulated only with high-resolution, non-hydrostatic models with data assimilation. Data 
assimilation is a method used in NWP to incorporate observations into the model state in order to 
determine the initial state of the atmosphere. Dust-related data assimilation was emphasized in the 
early days of dust modelling as an essential condition for improving accuracy of dust forecasts by 
Nickovic (1996). 
 
 Nickovic et al. (2012(b)) presented results of the operational dust forecast based on the 
eight-bin DREAM8-NMME, driven by the NCEP/NMME non-hydrostatic model, with an assimilation 
module included, as provided by SEEVCCC at the NMS of Serbia. The operational DREAM8-
NMME was run over North Africa and West Asia (Figure 85) during the 2012 dust season. In a 
sensitivity experiment, the model was run with and without data assimilation. Figure 85 shows a 
significant increase in model accuracy when data assimilation was included. Specification of 
sources is another critical element for successful dust modelling.  
 
  

 

 
Figure 85 - Domain of operational DREAM8-NMME dust forecasts with MODIS AOD assimilation included (left); AERONET 

AOD observation sites (centre); AOD scatter diagram with (black points) and without (red points) assimilation, when 
compared with the AERONET AOD in the region (right) (after Nickovic et al., 2012(b)) 
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 Finally, it has recently been demonstrated that, in order to predict accurately the dynamics 
of a small-scale haboob caused by a convective downburst (July 2011 haboob in Phoenix, Arizona, 
USA), it was necessary to include most current high-resolution satellite data (MODIS MOD13A2 
land cover and MODIS NDVI) (Vukovic et al., 2013). A similar approach should be considered for 
West Asia. 
 
Contact person: 
Slobodan Nickovic 
South East European Virtual Climate Change Centre (SEEVCCC) 
Atmospheric Research and Environment  
Republic Hydrometeorological Service of Serbia  
E-mail: nickovic@gmail.com 
 
 
 Data assimilation is currently performed by the MACC-ECMWF global model using MODIS 
AOD data and, since 30 April 2013, the UK Met Office global NWP model. This model includes 
standard MODIS AOD over land, where the aerosol types mark the aerosol as dust and DB 
observations over bright desert surfaces. 
 
 In the 1990s, DSD was considered to be homogeneous as it was based on information 
about land-cover characteristics and soil texture that was available at the time. In the 2000s, the 
importance of so-called smaller-scale dust-source hotspots was recognized, followed by the use of 
more accurate information on major dust sources related to topographic depressions containing 
sediments in paleo-lakes and river beds (e.g. Ginoux et al., 2001). More recently Ginoux et al. 
(2012), made mapped sources based on satellite observations, distinguishing between natural, 
anthropogenic and hydrological dust sources. See Section A.2.1 (Dust sources).  
 
Specific recommendations on dust forecasting for West Asia: 
 
1. Establish a virtual centre with both graphical and numerical prediction products from 

outputs of global models, the information being provided by the SDS-WAS NAMEE 
Regional Centre, hosted by Spain, and dust-model outputs available from each member. 
This centre would avoid redundancy in every country. An accessible website should be set 
up, which could be replicated in countries with available computational resources. 
 

2. Create a working group comprising weather forecasters of all countries and supported by 
researchers in each country who wish to participate in this exercise, to evaluate the quality 
of each model by comparison with dust storm events (mostly from satellite information). It 
may be assumed that the ideal model does not exist. In any case, it will be necessary to 
know which models best predict dust storms in the area of responsibility of each country. It 
should not be forgotten that the ultimate responsibility for national prediction lies with the 
NMS. In any case, the validation expert group may also use objective model validation tools 
proposed in Section B.2.4. 

 
3. Provide model-comparison exercises during selected dust episodes in the region to answer 

questions arising from Point 2 above. 
 
4. Provide continuous model validation (against ground-based or satellite-borne observations) 

for high-resolution models with data assimilation and comparisons with other models. 
 
5. Reach agreements with the institutions currently running dust-forecast models, available 

through the SDS-WAS NAMEE Regional Centre, so that the geographical domains of the 
models are extended to the eastern West Asia region. 

 
6. Develop and implement high-resolution models in order to predict dust storms associated 

with mesoscale convective systems by bilateral cooperation agreements or contracts with 
groups specialized in high-resolution dust modelling.  
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7. In close collaboration with UNEP and national environmental agencies, promote 
multidisciplinary studies leading to high-resolution maps of dust sources and their 
characteristics, in order to improve dust modelling with more accurate inputs and to 
organize collection of PM-type observations using UNEP communication links with national 
environmental authorities. Local/national data on land use, soil texture and land cover are 
ingredients in the model-emission parameterization. Land/soil information should be at the 
highest possible resolution, preferably finer than 1 km. As it appears that rapid soil 
degradation is taking place in some areas, it is necessary to update the list of dust sources 
there. 

 
B.2.4  Dust-forecast validation 
 Dust-model verification is an important activity targeting knowledge of model performance 
and quantifying model reliability. SDS-WAS Regional Centre NAMEE has made great strides in 
model validation, which might be replicated for West Asia. 
 
Validation activities are organized at different temporal frameworks: 
 
1. Near-real-time model evaluation. Rather than a detailed validation of dust forecast, the 

model evaluation is an assessment of how the forecast behaves relative to a few key 
observations that are available in NRT (Figure 86). This allows modelling groups and end-
users to have a quick overview of the quality of the forecast (see http://sds-
was.aemet.es/forecast-products/forecast-evaluation). By clicking on a specific station, the 
comparison for the site can be seen (Figure 87). Model data are linearly interpolated to the 
sites’ geographical coordinates. 

 
2. Near-real-time model comparison. Products from different numerical prediction models are 

represented at a common geographical domain, which is intended to cover the main dust-
source areas, as well as the main transport routes and deposition zones in the region 
(Figure 88). Products with lead-time up to 72 hours are represented using common colours. 
See http://sds-was.aemet.es/forecast-products/dust-forecasts/compared-dust-forecasts. 

 
 

Figure 86 - Map of AERONET AOD stations used for validation of dust-model forecasts. NRT validation for selected dust-
prone stations is shown at http://sds-was.aemet.es/forecast-products/forecast-evaluation 
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Figure 87 - Comparison of AOD forecast by SDS models against AOD observed at Solar Village AERONET station 

(Saudi Arabia) as yellow triangles from the beginning of April 2013, plus AOD prediction from models 
 
 
 

 

 
Figure 88 - DOD from six dust models for 21 April 21 at 12:00 UTC 

 (http://sds-was.aemet.es/forecast-products/dust-forecasts/compared-dust-forecasts) 
 
 
 

3. Model-evaluation metrics, monthly scores. The forecasts of DOD are compared with the 
total AOD provided by AERONET for 42 selected dust-prone stations located around the 
Mediterranean basin, Iberian Peninsula, North Africa and Middle East. The common metrics 
that are used to quantify the mean departure between modelled and observed quantities 
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are the mean bias error, the root-mean-square error, the correlation coefficient and the 
fractional gross error (see http://sds-was.aemet.es/forecast-products/forecast-
evaluation/model-evaluation-metrics). 

 
4. Model-evaluation metrics, seasonal scores. The same as for Point 3 but for winter, spring, 

summer and autumn of each year (see http://sds-was.aemet.es/forecast-products/forecast-
evaluation/model-evaluation-metrics-seasonal). 

 
5. Model-evaluation metrics, annual scores. The same as Point 3 but for annual data of each 

year (see http://sds-was.aemet.es/forecast-products/forecast-evaluation/model-evaluation-
metrics-annual). 

 
 The contact person for evaluation/validation activities is: Enric Terradellas (SDS-WAS 
NAMEE Regional Centre) (eterradellasj@aemet.es) 
 
Specific recommendations: 
 
• Replicate for West Asia the evaluation/validation system developed at the SDS-WAS NAMEE 

Regional Centre incorporating the dust models currently run in West Asia countries (e.g. the 
COSMO_ART aerosol model run at the National Centre of Meteorology and Seismology of the 
UAE). 

• Evaluate models for a few selected dust storm cases caused by both small-scale 
meteorological processes (such as convective-based haboobs, low-level jet dust storms) and 
large-scale processes (shamal, meteorological fronts).  
 

 It is to be noted that the most important and almost unique aerosol/dust observations, not 
only for the SDS WAS, but also for other global aerosol validation systems, are those obtained 
from AERONET, hence the enormous importance of significantly strengthening the AERONET 
observation network in the region, as proposed in Section B.2.1.3. 
  
Future recommendations for model validation should be aimed at in situ measurements of PM10, 
visibility or vertical profiles with lidar techniques, but such validations are still under development 
by research groups. 
 
 
B.2.5  Model reanalysis 
 A dust-model reanalysis is a dust dataset spanning an extended period, using a single 
consistent analysis scheme throughout. Long-term data series from model reanalysis permit dust 
climatological studies to be carried out, such as such those recommended below: 
 
• Monthly/seasonal dust spatial distribution  
• Identification of dust sources and pathways  
• Dust/aerosol long-term trends 
• Seasonal and interannual dust variability 
• Changes in dust driven by meteorological pattern changes 
• Changes in dust sources if weather patterns stay stable 
 
 Some of these studies are essential to understanding basic aspects of the spatio-temporal 
distribution of dust storms, as shown in Section A.2.6. (Dust climatology). An example of model 
reanalysis is shown in Figure 89. 
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Figure 89 - Daily mean AOD from AERONET (black dots) and MACC reanalysis (red dots) for Solar Village (Saudi Arabia) 

(after Cuevas et al. 2013(b)) 
 

 
 The seasonal and interannual AOD variations from MACC reanalysis is excellent (Figure 
89), with a good fit to AERONET. At first glance, it seems that both systems show a similar positive 
AOD. 
 
There are several reanalyses available for West Asia: 
 
• MACC-ECMWF (since 2003). MACC reanalysis is available from the ECMWF 

Meteorological Archival and Retrieval System (MARS) 
(http://www.ecmwf.int/services/archive/). MARS data are available free of charge to 
registered users in Member and Cooperating States. There is no public access to MARS. 
Contact person: Angela Benedetti (Angela.Benedetti@ecmwf.int) 

• BSC-DREAM8b From (from 1 January 2000 to 31 December 2012). More information and 
data download at: http://www.bsc.es/earth-sciences/mineral-dust/catalogo-datos-dust 
Contact person: José María Baldasano (Jose.baldasano@bsc.es) 

• BSC-DREAM (1958-–2006). Contact person: José María Baldasano 
(Jose.baldasano@bsc.es) 

• NMMB/BSC-Dust (1985-–2006). Contact person: José María Baldasano 
(Jose.baldasano@bsc.es) 

• NMMB/BSC-Dust (1979-–2010). Contact person: José María Baldasano 
(Jose.baldasano@bsc.es) 

• GOCART reanalysis is publicly available for the period 1 January 2000 to 1 December 2007 
through the NASA Giovanni application (http://gdata1.sci.gsfc.nasa.gov). 

 
 Other dust-model reanalysis results from the combination of a historical isentropic back- 
trajectory dataset with in situ observations, soil-condition maps, mineralogical maps, etc., might be 
of great interest, especially for dust-source studies. These reanalyses permit specific interesting 
analyses such as the following: 
 
• Dust-source identification for key sites (large cities, industrial facilities, strategic sites, etc.), 

using air-mass historical back-trajectory datasets (e.g. HYSPLIT or Flextra).  
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• Dust-source identification for key sites, crossing air-mass historical back-trajectory datasets 
with in situ PM partitioning (if any), in situ AOD or mineralogical maps of the region. An 
interesting paper focused on Saharan dust mixed with industrial pollution transport from in 
situ PM10 chemical analysis at the Izaña Atmospheric Observatory and back-trajectories is 
Rodríguez et al. (2011).  

 
 
B.2.6  Regional collaboration mechanisms  
 SDS monitoring and forecasting represent a technical and conceptual challenge for the 
NMSs of those countries affected by SDS, since they are officially mandated to report weather 
phenomena at the national level. SDS monitoring and forecasting activities have some added 
difficulties and complexities, however, that justify the strategy and collaboration mechanisms 
proposed below: 
 
• Conventional meteorological observation systems do not allow the observation of 

atmospheric dust. Apart from visibility provided by meteorological observatories, ground-
based systems for dust observations consist of new techniques such as sunphotometry and 
lidar, which are still under development, and on techniques normally confined to the field of 
air quality (PM10 and PM2.5 measurements and filter chemical analysis). Meteorological 
satellites do not provide quantitative information on dust. This is provided by sophisticated 
orbiting spectroradiometers, whose products are the result of complex algorithms, 
validations with ground-based, remote-sensing instruments, etc.  

 
• The development of dust models is about 30 years behind that of NWP. Paradoxically, 

these do not include dust and aerosols as variables in the equations. Already in 1922, 
however, Lewis Fry Richardson developed the first NWP system, based on simplified 
versions of Bjerknes’s “primitive equations” of motion and state, and included an eighth 
variable for atmospheric dust (Edwards, 2000). Although dust models can function 
operationally, they are not really operational models in the sense that this term has for 
meteorological services. Dust models still require developments and validations, so we 
need to work with them at operational and research levels simultaneously. 

 
• Dust storms, unlike common weather storms, movement of fronts and clouds, are always 

generated in specific areas where natural processes or human activities have produced 
land degradation. Dust monitoring near sources must be set up in order to incorporate that 
information into models. For example, Kuwait is one of the countries that suffer the greatest 
impact of dust storms in West Asia, which are primarily caused by dust sources in Iraq. It 
would be inefficient to establish a dust-monitoring and prediction system for Kuwait, without 
including Iraq.  

 
 On another level, sophisticated, ground-based techniques (lidar, sunphotometers, etc.) are 
not simple “plug and play” pieces of equipment. The exploitation and analysis of huge amounts of 
satellite data often require data-processing skills in data processing and the implementation of dust 
models, as well as new parameterizations and settings, must be undertaken by modelling and 
computation experts. All this requires the participation of experts and researchers from universities 
and research centres. 
 
 On the other hand, SDS systems should have a major operational component: observation 
networks must be operated and maintained in the long term and must be communicated in real-
time; numerical models need to run 365 days a year and 24 hours a day. NMSs have extensive 
experience, facilities, infrastructure and technical resources to achieve operational commitments. 
NMSs also have a long tradition of international relations through UN agencies and cooperation 
with other NMSs. Furthermore, NMSs have experience in dealing with national users who must 
exploit the SDS end products.  
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 For all the above reasons, close cooperation between among NMSs, air-quality agencies, 
universities and research centres, both at national and regional level, is essential to implement an 
SDS-AWS Regional Node for West Asia. This, at least, has been the experience gained with SDS-
AWS NAMEE Regional Node. 
 
 The WMO SDS-WAS Science and Implementation Plan (WMO, 2012) offers an operational 
structure for dealing with a diverse community anchored by well-established WMO systems of 
research, observations, numerical weather and climate prediction and service delivery. The 
community of practice for SDS observations, forecasts and analyses is diverse, requiring the 
development of interfaces with users through careful assessments. The WMO SDS-WAS Science 
and Implementation Plan proposes an architecture and information exchange that will secure 
efficient and balanced cooperation and participation of the major components of the SDS-WAS 
system: research, prediction, observations and service delivery. It is an activity that cuts across 
WMO programmes, as well as involving a substantive partnership outside the NMSs, particularly in 
research. In the framework of this conception, SDS-WAS is an international network of research, 
national operational centres and users, organized through regional nodes and assisted by an SDS-
WAS regional centre (Figure 90). It is coordinated by the SDS-WAS Steering Committee, 
supported by the WMO Secretariat and reports to the Commission for Atmospheric Sciences 
through the World Weather Research Programme (WWRP) and GAW. 
 
 At the regional level, an SDS-WAS is structured as a federation of partners. The regional 
nodes, as an aggregate structure, comprise the SDS-WAS federation. What the term federation 
implies is an organized structure following minimum global standards and rules of practice. A 
federated approach allows flexibility, growth and evolution, while preserving the autonomy of 
individual institutions. It allows a variety of participants (such as regional centres, serving as hosts; 
university research centres, serving as partners; WMO-designated operational forecasting centres; 
meteorological operational services; health organizations, etc.) to cooperate and benefit without 
changes to their own internal structures and existing arrangements. The structure is scalable and 
allows for adaptability to changing research and operational environments. 
 
 

 

 

Figure 90 - The international SDS-WAS network comprised of federated nodes assisted by regional centres  
(WMO, 2012) 
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Figure 91 - Flow of information between SDS-WAS system components for a regional node, consisting of a consortium of 
partners supported by the regional steering group and regional centre (WMO, 2012) 

 
  
 
 Figure 90 highlights the necessary cooperation between the present SDS-WAS Regional 
Node for Northern Africa, Middle East and Europe with the future SDS-AWS Regional Node for 
West Asia during the transition period until the creation of the last node. 
 
 The flow of information between various SDS-WAS regional components and the role of an 
SDS-WAS regional centre is shown in Figure 91. The node is also organized according to federal 
principles. 
 
 According to the SDS-WAS Implementation Plan 2011–2015 (April 2012), global and 
regional SDS-WAS activities are harmonized by a SDS-WAS (global) steering committee and 
regional steering groups (RSGs), assisted by the WMO Secretariat. Each node has to implement 
the following tasks agreed upon by the corresponding RSG: 
 
• Provide a web-based portal agreed between regional partners for user access to regional 

research and forecast activities and services.  
• Support efficient observation data-sharing, providing neutral ground for SDS-WAS data 

exchange. 
• Assist partners in implementing agreed research and forecast activities at the regional level.  
• Cooperate with existing operational service delivery mechanisms, recognizing that warnings 

related to SDS-WAS are generally the responsibility of the NMSs and that SDS-WAS 
products provide input to NMSs. 

• Report on implementation progress to the WWRP Joint Scientific Committee and to the 
SDS-WAS Steering Committee.  

• Cooperate with existing operational service delivery mechanisms, recognizing that warnings 
related to SDS-WAS are generally the responsibility of the NMSs, so that SDS-WAS 
products represent input to NMSs. 
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• Support research among partners of a regional node and help implement operational SDS-
WAS forecasts at the NMSs.  

• Guide RSG on implementing agreed research and forecast activities at the regional level. 
• Organize training workshops on the use of SDS-WAS products 
• Convene symposia, conferences, workshops and other meetings, as necessary, to advance 

SDS research activities.  
• Assist, when necessary, in resource mobilization through trust-fund contributions. 
 
 Through SDS-WAS Regional Node activities, partners can contribute, according to their 
capabilities. Considering that the most important areas of collaboration are observation, modelling 
and prediction, capacity-building and user support, and that these areas can be subdivided, in turn, 
into other more specific topics, partners may propose taking the responsibility of leading the 
coordination of a topic and implement a dedicated website with all the information agreed on that 
topic. Each topical website would be part of the SDS-WAS web portal of the regional node. This, in 
turn, could be mirrored in servers of countries with adequate computational resources. A web 
portal will be established at the regional node as a result of node activities and partners’ 
coordination. Thus, it will not depend on a single institution and, if any member fails, another 
partner could assume its corresponding function. In this way, a robust, participatory, regional 
system that is transparent to all partners can be established. Any member of the region may join 
the regional node at any time. 
 
 To achieve this configuration, it is necessary to create several WGs addressing different 
subjects, which should be integrated by corresponding specialists and experts of the region. The 
WGs will identify activities and specific partners of the regional node should assume 
responsibilities and obligations. These WGs should emerge from a first meeting of the SDS-WAS 
RSG. 
 
 
B.2.7  Data-exchange policy 
 According to the conception of a virtual or distributed regional node, NRT observations and 
model outputs should be shared freely through the virtual central facilities of partners. 
 
 Databases of observations and model outputs stored in the virtual centre facilities 
maintained by different partners should be freely accessible by other partners. Password-accessed 
FTP connections should permit partners to download data automatically in standardized formats. 
 
 A WG on data format and data access should be created. An alternative approach would be 
to incorporate data standardization and data exchange as primary activities in each of the WGs 
dealing with databases. 
 
 
B.2.8  SDS products and services 
 A detailed description of the impacts of SDS has been given in Section A.3 and numerous 
SDS products could be identified as being useful to many socio-economic sectors in West Asia. 
 
 One of the most important products that NMSs could provide to the general public and 
specific users and professionals in different sectors is accurate SDS early warnings, anticipating 
their impacts and reducing costs. Environment, health, transport and civil defence authorities need 
to be notified of observed or predicted SDS events in a timely fashion.  
 
 A challenging, and probably profitable, orientation of SDS products would be the support to 
emerging activities for which the SDS can be critical: solar power plants (production efficiency and 
maintenance), electronics, airport operations and aviation maintenance, high-speed rail operations, 
farm and livestock management and future regulations on air quality. 
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 End-products should be agreed upon with potential users on the one hand and SDS 
products must be “translated” in readily understandable language for the end-user on the other. 
Thus, a WG on user-oriented SDS products and services should also be also created within the 
SDS-WAS West Asia Regional Centre. 
  
 An important aspect concerns the building-up of a basic body of data and knowledge on 
SDS observations. The limited data available on SDS and their impacts means that policymakers 
do not respond. To mobilize resources, stakeholders need unquestionable evidence and proven 
results published in scientific and technical reports. In the case of air quality, for example, when 
scientific papers demonstrate the direct impact of pollution on health and the media broadcast this 
information, there is a demand from society for control measures to be taken, inciting decision-
makers to act. 
  
 Concerning the regional node web portal, some basic information should be provided: 
 
• Maps with NRT observations of visibility, AOD (sunphotometers), in situ PM10 and aerosol 

vertical profiles when available 
• Latest satellite dust products for the region 
• Homogenized graphical outputs of regional dust models for visual intercomparisons 
• NRT model validations. 
 
 
B.2.9  Training and capacity-building 
 Capacity-building in SDS-WAS involves technology transfer with self-sustaining capability 
and long-term partnership in mind (WMO, 2012). It is coordinated by various mechanisms, 
including those well established in WMO through the Development and Regional Activities 
Department. Elements include consultation meetings with national users to develop effective and 
realistic products and tools for their needs, training courses on the use of services that are 
available, research workshops and the provision of guidance and outreach material.  
Depending on available resources, capacity-building and training activities should include: 
 
• Regular scientific exchange through scientific workshops or seminars, which will provide a 

forum for discussion of recent SDS developments, such as observations, modelling and 
forecasting, and users. 

 
• Specialized capacity-building includes training in specific technical issues, such as satellite-

data access and analysis, dust storm forecast and simulation model output analysis, 
targeting user needs through new information products, measuring and monitoring 
particulate air quality through remote-sensing (sunphotometers or lidar) and in situ air-
sampling instruments, etc. 

• Medium-term (several months) stays at specialized centres to learn specific techniques or 
methodologies. 

 
 The most practical and effective observation training courses are those that combine theory 
and practice, taking advantage of any instruments installed.  
 
 In relation to the implementation of dust models, it is essential that specialists are trained 
for a time in centres that run dust models and are tutored externally during the implementation of 
the model and in subsequent phases of early operation and model validation.  
 
 For example, the experience gained by the CoE at Muscat (Oman) in training scientists 
from Middle East countries in the use of satellite data, should benefit the Regional Node. 
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B.3 SUMMARY AND CONCLUDING REMARKS 
 
 This report, Establishing a WMO SDS-WAS Regional Node for West Asia: Current 
Capabilities and Needs, has been elaborated under the overall supervision of the WMO 
Atmospheric Research and Environment Branch, with the support of the UNEP Regional Office for 
West Asia.  
 
 Its aim is to assess the observation and prediction capabilities of sand- and dust storms in 
West Asia and provide guidance in establishing a WMO Sand- and Dust Storm (SDS) Warning 
Advisory and Assessment System (WAS) Regional Node for West Asia, by presenting the 
essential actions and activities to be implemented.  
 
 The specific objectives of this report are to: 
 
• Review published information on dust storm incidence in West Asia, including the Islamic 

Republic of Iran and Turkey. 
• Compile existing information on dust sources, frequency/intensity of dust storms and socio-

economic and environmental impacts of dust. 
• Recommend a strategy for dust-model validation. 
• Establish regional and national institutional mapping. 
• Propose regional institutional collaboration mechanisms for the monitoring, prediction and 

delivery of dust-related products and services. 
• Propose types and density of measurements in the region, based on existing observation 

capacity.  
• Propose a multiscale/downscaling dust-forecasting strategy for the region, based on 

identified existing numerical modelling facilities. 
• Propose a regional data-exchange policy. 
• Advise on regional training and capacity-building programmes. 

 
 The WMO SDS-WAS mission is to enhance the ability of countries to deliver timely and 
high-quality SDS forecasts, observations, information and knowledge to users through an 
international partnership of the research and operational communities. It is proposed that the WMO 
SDS-WAS Regional Node for West Asia be established in collaboration with the UNEP Regional 
Programme to Combat Sand and Dust Storms. Through collaborative partnership with UNEP, the 
WMO SDS-WAS Regional Node for West Asia will provide SDS phenomena assessment and 
secure an SDS monitoring and early warning system for the region. 
 
 
B.3.1  Dust climatology and trend analysis in West Asia 
 Sandstorms and dust storms are two completely different phenomena that require different 
treatments and approaches. While sandstorms are very local and confined to the first few metres 
above ground, dust storms occur at an altitude of a few kilometres (1–6 km) with horizontal 
extensions of thousands of kilometres. Dust storms cannot be stopped by natural or artificial 
physical barriers. Action is required at their source – degraded lands, which are often hundreds or 
thousands of kilometres from the points of impact. Basically, WMO SDS-WAS refers to dust storm 
assessment, monitoring and forecasting. 
 
 SDS are a major problem in West Asia but their main characteristics (intensity, extent and 
frequency) are not well known or, at least, have not yet been addressed in a scientific and 
systematic way. The absence of a basic climatology of dust sources and pathways in a regional 
context has hindered the compilation of a regional SDS picture.  
 
 Given the absence of a regional climatology of dust storms – and although not initially 
foreseen in this report – a basic climatology of dust storms from AERONET 
(http://aeronet.gsfc.nasa.gov) data, satellite information and reanalysis outputs of global and 
regional dust models has been performed. Different climatologies obtained from dust-model 
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simulations and satellite observations show some differences but common patterns can be 
distinguished in all of them. 
 
 West Asia is part of the well-known “dust belt” stretching from the western Sahara (with 
long dust intrusions to the west over the Atlantic Ocean) to central and eastern Asia (with long dust 
intrusions to the east over the Pacific Ocean). The climatology shows the existence, from March to 
September, of active dust sources and pathways. It is worth noting the pronounced dust corridor 
from eastern Syrian Arab Republic to Oman, with significant dusty areas over Iraq impacting the 
Gulf under a northern airflow. A second prominent dust source is observed over the Empty Quarter 
and central Saudi Arabia. South-western Islamic Republic of Iran and areas on the Iranian Gulf 
coast are also active dust sources. Dust sources in the Iranian-Afghan-Pakistan border region 
contribute to high dust levels observed over the northern Arabian Sea. In summer, the Tokar Gap 
in north-eastern Sudan, near the Red Sea, impacts the Arabian Peninsula and the Arabian Sea. 
Under different synoptic and mesoscale weather conditions, most of the region – apart from Turkey 
– is a potential dust source.  
 
 Of particular interest is the presence in the air in many areas – mainly in Gulf countries – of 
a mixture of mineral dust from desert and industrial aerosols. Unfortunately, the ground-based 
observation networks are not sufficiently comprehensive nor the network topologies the most 
suitable to perform a detailed spatial-temporal analysis of this characteristic aerosol distribution. 
 
 Concerning trend analysis, West Asia – especially the Arabian Peninsula and Mesopotamia 
– is the only region in the world where a positive trend of AOD is found. AOD, a parameter that 
indicates the total content of aerosol in the atmospheric column, is basically constituted by dust in 
this region. The positive trend found over Iraq might be linked to the increase in the number of dust 
sources in the last decade identified in eastern Syrian Arab Republic and Iraq. On the other hand, 
a negative trend of EVI has been found for the period 2002–2013 across Mesopotamia. EVI is a 
measurement of the “greenness” of the Earth’s land surface, with increasing greenness indicating 
increased ground covered by growing vegetation. The positive trend in AOD values over this 
region might therefore be a result of land degradation, probably due to reduced water availability 
and changes in land use. 
 
 On the other hand, global warming has the potential to cause major changes in dust 
emissions. IPCC (2007) suggests that, under most scenarios, many dryland areas will suffer from 
lower rainfall regimes and drier terrains because of higher rates of evapotranspiration. Lower 
rainfall will favour the formation of shallow or extremely shallow soils that are often characterized 
by a high content of airborne particles and small fractions of rock-erosion elements. Under this 
scenario, dust storm activity could increase, though this conclusion depends on how winds may 
change – a matter of great uncertainty. 
 
 According to the averaged projection of 21 climate models for West Asia, the percentage 
changes in average annual temperature by 2100 from the 1960–1990 climate baseline, are up to 
4°C over most of the region. The agreement between the models is good. Similarly, it is expected 
that a broad swathe of West Asia between 19°N and 41°N will experience mainly decreases in 
precipitation of up to 20% or more, while increases of up to 20% or more are projected for the far 
south-eastern Arabian Peninsula.  
 
 Projected higher temperatures and reduced rainfall could favour desertification processes 
and thus the strength of dust mobilization in West Asia. The WAS-SDS will most probably play a 
more important role in this domain over the next few decades.    
 
 
B.3.2 Impacts of dust storms in West Asia 
 The Middle East is the second largest source of global dust after the Sahara desert, but, 
unlike North Africa, where large population centres are concentrated along the coasts of the 
Mediterranean and the Atlantic Ocean, relatively far away from dust sources, much of the 
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population in West Asia lives inside, or in the vicinity of, dust sources. The impact on ecosystems 
and on many economic and social activities is therefore of utmost importance. 
  
 There is some evidence to indicate enormous impacts on many aspects of human health 
and on road and air transport, the latter owing to the severe reductions in visibility caused by dust 
storms. These studies are scarce in the region and, in most cases, consist of simple notes and 
internal reports, not rigorous scientific studies which have been carried out and validated. 
 
 In the health sector, based on a systematic review of the literature using the Web of 
Knowledge database, very few publications in West Asia report the impacts of atmospheric dust on 
the population. 
 
 The impacts of SDS on terrestrial and marine ecosystems are huge. To those on land must 
be added the movement of dunes invading farmlands. In marine ecosystems – and considering the 
importance of fisheries in the region – attention is drawn to the absence of studies regarding the 
effect of dust deposition on the ocean, which contributes to marine primary production. Moreover, 
deposition of dust over the ocean can also produce HABs, popularly known as red ties. 
Photosynthetic activity in the Gulf and the Arabian Sea due to fertilization by dust nutrients may 
well be important in mitigating the increase in anthropogenic CO2 in the atmosphere. 
 
 In relation to the rapid diversification of energy sources that is being experienced in West 
Asia, particularly in relation to solar power, few studies have analysed the role of atmospheric dust 
in the extinction of solar radiation, as in decreased solar-plant performance arising from the 
deposition of dust on collecting surfaces and reflectors. Even fewer studies have been carried out 
on the use of applications, such as dust observations and predictions, to improve the operation of 
solar plants and to better manage the distribution of energy in national grids. 
 
 Atmospheric dust affects weather, atmospheric composition and climate through a wide 
range of interactions and both positive and negative feedbacks. For example, dust has a significant 
effect on SST retrievals from satellites. Although cloud-screening algorithms will often detect thick 
layers of aerosol, biases up to 3°C will remain, depending on the SST retrieval algorithm and 
brightness-temperature impacts of the dust, affecting NWP models. Mineral dust may also affect 
air temperature through the absorption and scattering of radiation. Mineral dust is one of the major 
contributors to Earth’s radiative balance, since its radiation backscattering is remarkable. 
Depending on the size distribution, chemical composition and shape of the dust particles and the 
vertical position/extent of the dust layer and the local surface albedo, mineral dust particles may 
have a positive (heating of the climate system) or negative (cooling) radiative forcing. IPCC (2007) 
reported that the dust radiative effect due to mineral aerosols lies in the range of -0.56 to +0.1 
W/m2, and we know that dust also affects the hydrological cycle. Firstly, when dust cools, the 
surface inhibits both evaporation and precipitation. Secondly, dust modifies the size distribution 
and the phase of cloud particles by acting as cloud condensation and ice nuclei, modifying the 
development of precipitation. Mineral dust must, therefore, affect regional the weather and climate 
of West Asia decisively. These terms are used because there are no studies that evaluate and 
quantify these impacts in the region. 
 
 The assessment and quantification of the different impacts that atmospheric dust exerts on 
ecosystems and on numerous socio-economic activities in the region have yet to be performed. 
There are several reasons for this wide gap in our knowledge of dust impacts but the most 
important is probably the significant lack of a comprehensive and long-term dust-observation 
system. The lack of dust databases means that studies crossing information with databases of an 
entirely different nature in the fields of health, agriculture, industry, oceans, etc., cannot be carried 
out. Epidemiological studies on the role of dust in respiratory diseases are impossible, for example, 
without a relatively long series of PM10 in which the contribution of mineral dust is known. 
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 All the countries of the region should start – and as soon as possible – to build an 
organized body of knowledge that provides scientifically backed information about the importance 
and impacts of SDS, so that policymakers can take concrete actions aimed at obtaining, and 
supported by the use of, such information. 
 
 The problem of the weak observation system in the region is addressed in the next section. 
 
 
B.3.3  Dust monitoring in West Asia 
 The SDS observation system currently available in the region is far below what is actually 
needed for dust storm monitoring, prediction and characterization. Minimum efforts focused on 
improving, expanding and adapting existing dust-observation networks will result in significant 
improvements. 
 
 The most basic network with conventional meteorological observations are provided in 
SYNOP and METAR reports, in which horizontal visibility is a first indication of the presence of 
dust, is, in general, well distributed and with a relatively good density of stations. Some gaps exist, 
such as the Empty Quarter in Saudi Arabia, adjacent regions of Oman and Yemen and also certain 
lowland areas of the Islamic Republic of Iran. Most of the countries have operational automatic 
devices for visibility ranges such as MOR and RVR and all of them are important in airports, since 
one of the activities most affected by dust is air traffic. Visibility reduced by atmospheric dust from 
SYNOP observations would be an interesting product, at least for dust nowcasting. Some value-
added activity should be implemented in near-real-time, such as filters for including relative 
humidity and present-weather data, in order to avoid including reduced visibility due to fog or heavy 
rain. Long-term climatologies might already be obtained, for example, by computing the monthly 
mean number of days in which visibility is below a threshold value. Climatology from visibility data 
on the regional scale would constitute a simple but unique picture of the spatial-temporal 
distribution of dust storms and an interesting first approach to indirectly determine dust trends.  
 
 The second dust-observation network type, based on dust-deposition gauges, is highly 
recommended. Although this method does not provide data on dust concentrations or enable 
determination of dust levels from a particular event, it does enable determination of the relative 
“dustiness” of sampling locations and so might provide a temporal and spatial climatology of 
breathable dust at surface level. A regional network of dust-deposition gauges should be installed 
in each country, using standardized sampling and evaluation methodologies and a network 
topology that meets objective criteria, taking into account dust sources and pathways, and filling 
observation gaps. 
  
 Stations measuring particulate matter constitute the third level of in situ observations. 
These useful atmospheric parameters are normally monitored within air-quality programmes. The 
number of PM10/PM2.5 stations in the countries reporting this information is reasonable and 
proportional to their population and geographical extension; some countries even have an 
excellent density of stations.  
 
 PM10/PM2.5 networks for dust characterization and for understanding impacts of dust on 
the population are of great importance and in situ PM10 measurements are crucial to validate 
surface-dust concentration from models. In situ PM measurements provide information about 
aerosols/dust inhaled by people and, therefore, how dust storms directly affect people and 
ecosystems. Most of the information provided by satellites corresponds to the total content of 
aerosol/dust in the atmospheric column and this does not necessarily have a direct 
correspondence with surface-dust concentrations. Furthermore, the chemical composition of 
surface aerosol/dust is another critical aspect in health impacts and other applications and cannot 
be provided by remote techniques, only by in situ PM sampling. From the point of view of SDS 
monitoring, the major deficiencies identified are the following: 
 
• Too few stations are located in rural background conditions to monitor mineral dust only 

(mainly PM10) which would allow us to know its impact on air quality in the cities. PM10 
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and PM2.5 measurements in urban air-quality networks represent a mix of anthropogenic 
pollution (vehicles, gas-flares, industries, ships) and natural contributions. It is difficult to 
separate the contribution of each source if there are no background stations unaffected by 
anthropogenic contributions monitoring natural PM10. 

• There are no standards of air quality common to all countries of the region, especially for 
PM10. 

• A regional centre managing a common and homogenized quality-assurance system is 
lacking. 

 
 For these reasons, efforts should be made in the design and strategy of at least part of the 
PM measurement programme, in order to obtain optimal performance in the characterization of 
aerosol/dust background. Some PM10 stations should be set up in rural sites, far away from the 
direct impacts of anthropogenic sources located in cities and industrial centres in order to obtain 
aerosol background measurements which should be affected, basically, by mineral dust from local 
resuspension or transported from other regions.  
 
 Because of the complexity and vastness of West Asia, it is not possible to make 
recommendations on specific geographic locations for rural background stations. At national level, 
all dust storm pathways should be explored. As a rough estimate, about 10% of PM10 stations in 
each country should be located in rural background conditions. The rural background PM10 station 
network would provide useful information regarding the spatial and temporal variability of surface 
mineral-dust concentration and, at the same time, help to distinguish and understand the different 
sources of PM pollution measured by the air-quality networks in each country. 
 
 Since soil deterioration, together with wind, is one the primary causes of dust sources and 
consequently of SDS, improvement of in situ observation networks at dust hotspots is crucial for 
effective monitoring and forecasting. Mesopotamia should be properly monitored in collaboration 
with neighbouring countries that suffer most from the impacts of land degradation. 
 
 A fourth level of dust monitoring is found in ground-based, remote-sensing techniques, 
mainly sunphotometers and lidars or ceilometers. 
 
 Concerning sunphotometers, we have to highlight the role of AERONET 
(http://aeronet.gsfc.nasa.gov), a federation of regional networks based on photometric instruments 
located at ground stations (currently more than 400 worldwide) for monitoring atmospheric 
aerosols, including atmospheric mineral dust. It requires the standardization and calibration of 
instruments, data processing and distribution. AERONET seeks to provide continuous and easily 
accessible time series of aerosol measurements, such as microphysical and radiative properties in 
the atmospheric column. It is dedicated mainly to the characterization of aerosols and the 
validation of satellite data and aerosol models, as well as synergies with other databases.  
 
 The two most important dust sources in the world (North Africa and West Asia) have few 
AERONET stations. In West Asia, network coverage is sparse – only six stations are operational 
and these are unevenly distributed. AERONET does not cover dust hotspots or large cities affected 
by SDS. 
 
 As AERONET is the largest and most important network in the world for aerosol monitoring 
and the validation of both satellite and aerosol models, we propose the following actions aimed at 
improving AERONET in the region: 
 
• Re-start operations at the following former AERONET sites: 

 
- Kuwait University, Khalidiyah campus  
- Bahrain (re-start operations in the most convenient free-horizon site) 
- Dhadnah (UAE) 
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• Set up new AERONET sites chosen for the geographical location of dust storm pathways 
and topology of the regional network: 
 
- Arar (northern Saudi Arabia) 
- Najran (south-western Saudi Arabia) 
- Somewhere in the Empty Quarter (Saudi Arabia) 
- Dayr az Zawr (eastern Syrian Arab Republic) 
- Mosul (northern Iraq) 
- Baghdad (central Iraq) 
- As Smawah (southern Iraq) 
- Faud, Dhahirah (Oman) 
- Bani Bu Hassan (Oman) 
- Ahvaz, Khuzestan (south-western Iran)  
- Zabol (preferable) or Zahedan (Sistan basin, eastern/south-eastern Islamic Republic of 

Iran) 
- Tehran (Islamic Republic of Iran) 

 
 Annual maintenance and calibration of AERONET sunphotometers, following standardized 
protocols, are absolutely mandatory. The possibility of creating a regional AERONET centre should 
be seriously considered. 
 
 The situation concerning lidars and ceilometers, there are still substantial data-sparse areas 
in West Asia compared to North Africa and the Sahara. There is one lidar station at Zanjan (Islamic 
Republic of Iran) and more than 20 new-generation ceilometers in Turkey with potential use for 
SDS activities but, at present, they are operated only for aeronautic meteorology purposes. Lidars, 
however, permit the analysis of desert dust that has intruded into the PBL and the mixing 
processes of dust with other aerosol types, as well as the transport of dust at upper levels, which 
might be interesting for aviation in the region. Lidar measurements in combination with other 
techniques, such as sunphotometry, are ideal for investigating certain aspects of atmospheric 
composition, transport, deposition of dust and dust-cloud interaction, including cloud-formation 
processes. Nevertheless, lidars are advanced, expensive (>US$ 100 000) instruments that require 
specialists specifically trained for their operation, as well as dedicated personnel to retrieve vertical 
profiles with data-inversion algorithms. Maintenance costs are also high. Compared to 
sunphotometers, the lidar technique is more expensive and requires much more experienced 
specialists to work in both operations and data processing.  
 
 A lidar network similar to that proposed for AERONET sunphotometers would be the ideal 
scenario. Nonetheless, given the enormous complexity of the lidar technique, its high cost, and the 
level of development of this technology in the region, caution must be exercised when proposing 
lidar sites. For this reason, a first recommendation is to strengthen what has already been 
achieved. Support to the IASBS group that has designed, developed and operated two lidars in 
Zanjan (Islamic Republic of Iran) is therefore highly recommended. 
 
 A second recommendation for a lidar site would be Kuwait, strategically located in the dust 
outflow from Iraq and in the pathway of west-east-west dust clouds. Kuwait would be a key station 
of great interest for both operational and research activities. This lidar programme might be a 
collaborative effort between a university/research institute group and the Kuwait Meteorological 
Centre. A potential site could be at Kuwait University, where an AERONET station was in operation 
until August 2012. 
 
 The third recommendation concerning concerns Saudi Arabia, where two interesting sites 
with AERONET stations are in operation: the KAUST campus and the Solar Village at the Energy 
Research Institute of KACST. The KAUST campus station could monitor intercontinental dust 
transport, especially dust plumes over the Red Sea, while Solar Village would be an interesting site 
to monitor and characterize vertical dust distribution in the central Arabian Peninsula at or near 
dust sources.  
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 In a second phase, and co-located at existing AERONET stations, two additional lidar 
stations could be set up in the dust corridor (beginning in northern Iraq) in the UAE and Oman, 
respectively. These stations could monitor dust transport along the Gulf to the Arabian Sea and 
between the Arabian Peninsula and the Islamic Republic of Iran. 
 
 Initiatives from other groups of countries in the region would of course be welcome and 
should be considered in a medium-term dust-monitoring plan. A lidar programme requires a 
commitment and a significant involvement of research groups, without which it would not be 
possible to implement the technique. 
 
 Besides research-oriented lidar networks, a large number of ceilometers are distributed 
worldwide. Ceilometers (often called low-power lidars) are robust systems for continuous operation 
that can provide useful information about the aerosol layers, which can be used for operational 
dust monitoring and forecasting. Ceilometers are single-wavelength backscatter instruments that 
are relatively inexpensive (∼US$ 20 000) and are used at most airports for cloud-base monitoring. 
Many NMSs, as well airports, operate ceilometer networks, providing atmospheric measurements 
fully automatically and continuously of, for example, cloud-base  and PBL height, but also profiles 
of atmospheric aerosol backscattering. The involvement of NMSs in gradually extending the use of 
ceilometers into SDS activities is obvious, relatively easy and inexpensive. 
  
 Satellite observations are crucial for monitoring SDS events and providing SDS 
climatologies in the region, filling the huge gaps identified by in situ observations but they have 
marked limitations. Satellite observations require validation with accurate ground observations and 
satellite products are still limited both in time (usually once a day for quantitative dust observations) 
and variety of useful products for many applications. For example, satellites do not provide 
information about dust-surface concentrations affecting people and ecosystems and they cannot 
address chemical composition or aerosol size distribution.  
 
 Most of the countries in West Asia use the SEVIRI-MSG sensor for dust storm monitoring. 
In some countries, MODIS Aqua/Terra (both images and quantitative AOD) and MISR are used, 
but to a lesser extent and mainly for case analysis or for short short-term studies of a few years. 
NOAA satellite dust information is used mainly for meteorological analysis. The degree of 
utilization of aerosols/dust data from satellites is low in West Asia and, in most cases, quite basic, 
focused on immediate use for weather forecasting. Satellite pictures of dust storms are used for 
illustrating analysed events in some scientific articles.  
 
 The best sensor for continuous monitoring of dust storms is, without doubt, SEVIRI-MSG. 
Its high spatial resolution is complemented with a unique and powerful capacity: a high temporal 
resolution (15 minutes now and 10 minutes in the near future). While SEVIRI-MSG is currently the 
ideal satellite sensor for dust nowcasting, it does not provide reliable, quantitative AOD.  
 
 Aerosol products from MISR are excellent in generating climatologies for dust-source and 
pathway regions, while MODIS and SeaWiFS are excellent for quantitative AOD over the oceans. 
CALIOP and PARASOL on board the CALIPSO platform provide aerosol backscatter and 
extinction-coefficient profiles. Data from these space-based sensors are available in the 
corresponding databases and can be used in case analysis and for establishing climatologies for 
West Asia. 
 
 Long-term reanalysis of satellite-based observations at dust hotspots, specific stations 
(e.g. AERONET or SYNOP stations), as well as sensitive dust-impacted areas (cities, industrial 
facilities, airports) will quickly improve knowledge of the spatial-temporal variability of dust storms. 
Use of the Giovanni application is highly recommended for this type of analysis. Giovanni is a web-
based application developed by GES DISC that provides a simple and intuitive way to access, 
visualize and analyse vast amounts of Earth-science remote-sensing data without having to 
download them. 
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 The CoE for Training in Satellite Meteorology in Muscat (Oman), that forms part of the 
WMO-CGMS Virtual Laboratory for Education and Training in Satellite Meteorology (VLab) and is 
sponsored by EUMETSAT, could play a special role in satellite observations in West Asia.  
  
 Regarding observations, a particularly important requirement in West Asia is an accurate 
inventory (1 km resolution if possible) of dust sources, soil texture and land use. This inventory 
would greatly help the development of better dust models, since the sources are used as model 
inputs.  
 
 SDS monitoring will help facilitate timely and accurate dust storm forecasting and 
nowcasting but, in the long term, and in collaboration with UNEP national institutions, it will also 
support monitoring of the evolution of dust sources and dust pathways and the assessment and 
verification of measures implemented to reduce the impact of SDS after action has been taken in 
land-degraded, dust-source regions.  
 
 
B.3.4 Dust modelling and forecasting in West Asia 
 Only two countries, the Islamic Republic of Iran and Turkey, run appropriate regional dust 
models. DREAM8 Eta has been run at IRIMO since 2012 as a result of cooperation with 
SEEVCCC. BSC-DREAM8b has been run at the TSMS since July 2010, thanks to cooperation with 
BSC, Spain. In the case of ASMERC (Islamic Republic of Iran), the use of WRF-CHEM as a dust 
model for operational purposes does not seem to be an appropriate solution. The CHEM module 
associated with WRF was not conceived and developed for dust, but for chemical processes in air-
quality issues, as is also the case in the UAE with the COSMO_ART aerosol model.  
 
 Capabilities in the area of modelling are rather poor. A marked improvement can be quickly 
achieved through collaboration with model-provider institutions. Recently, the SDS-WAS NAMEE 
Regional Centre made available a set of dust-model outputs to West Asia countries, so there are 
real and immediate ways to improve notably the modelling and prediction of dust storms.  
 
 The modelling structure proposed for West Asia consists of a three-level nesting scheme. 
At the first level, daily global dust-model data could be provided by organizations/initiatives such as 
ICAP. Either an ICAP median of such model outputs or data from a particular global model group 
should be secured by the future West Asia Regional Centre through a special agreement with data 
providers. Nowadays, global models have a spatial resolution of ∼50 km, which will be increased to 
∼25–30 km in the near future. 
 
 In the next nesting step, global model data should be used for the initial and boundary 
conditions in a large regional dust-model area to feed regional models. Ideally, these models 
should have a resolution of ∼10–15 km. Over the last 20 years, a modelling community focused on 
dust models has developed dust-source specifications, parameterizations of dust emissions, 
radiation-dust and dust-cloud interactions, parameterizations, etc., building up a robust dust-
forecasting system. Fortunately, many of these regional models running over the West Asia 
geographical domain are currently available through the SDS-WAS NAMEE Regional Centre. In 
particular, this Centre offers dust-forecast outputs generated by different regional numerical 
models, both graphically and numerically, at: 
http://sds-was.aemet.es/forecast-products/dust-forecasts. 
 
 The availability of this set of specialized dust-prediction models constitutes an 
unprecedented breakthrough for the international community and especially for the countries of 
West Asia, which will have six digital models outputs and an ensemble available to add to the 
current dust-forecasting capabilities of each country. The geographical domain of these models 
should be expanded eastward in order to include dust sources and pathways in Afghanistan and 
Pakistan.  
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 Dust storms associated with small-scale convective processes in space and time, such as 
haboobs and cold-air downburst storms, can be captured neither by global models nor by regional 
models, given the small size of these meteorological processes, and because most of these 
models have not carried out adequate parameterizations of mesoscale convective cloud-resolving 
processes, low-level jets, etc. The third nesting level therefore consists of mesoscale/local dust 
models fed by data from (a) regional scale model(s). Such mesoscale modelling systems, which 
include non-hydrostatic atmospheric processes, should be downscaled to resolutions of ∼1–3 km 
in order to resolve both atmospheric driving conditions and dust soil sources and will complement 
global and regional models. The spatial resolution of mesoscale/local dust models will depend 
largely on the region to be covered and available computational resources. Two regional models 
that might easily be upgraded to mesoscale high-resolution models are SEEVCCC NMM-DREAM8 
and NMMB/BSC-Dust. 
 
 Dust-model verification is an important activity targeting knowledge of model performance 
and model reliability quantification. A great effort should be made to secure proper NRT and offline 
validation of dust models. The example of the SDS-WAS NAMEE Regional Centre could be 
followed. Model validation, in a first stage, requires a significant strengthening of AERONET in the 
region. 
 
 Dust-model reanalysis (model simulation) is essential for understanding basic aspects of 
the spatio-temporal distribution of dust storms. 
 
Some specific recommendations concerning dust modelling and forecasting are the following: 
 
• Establish a web-based virtual centre with both graphical and numerical prediction products 

from outputs of global, regional and mesoscale dust models. The SDS-WAS NAMEE web 
portal concept would be a good starting point.  

 
• Create a working group formed by weather forecasters of all countries and supported by 

researchers in each country to evaluate the quality of each model by comparison with dust 
storm events (mostly from satellite information). 

 
• Provide model-comparison exercises during selected dust episodes, as well as continuous 

model validation against ground-based or satellite-borne observations.  
 
• Reach agreements with the institutions currently running the dust-forecast models available 

through the SDS-WAS NAMEE Regional Centre, so that the geographical domains of the 
models are extended to the eastern West Asia region. 

 
• Develop and implement high-resolution models in order to predict dust storms associated 

with mesoscale convective systems by bilateral cooperation agreements or contracts with 
groups specialized in high-resolution dust modelling.  

 
• Replicate for West Asia the evaluation/validation system developed at the SDS-WAS 

NAMEE Regional Centre, incorporating the dust models currently run in West Asia. 
 
• Evaluate models for a few selected dust storm events caused by both small-scale 

meteorological processes (such as convective-based haboobs, low-level jet dust storms) 
and large scale processes (shamal, meteorological fronts).  

 
• Use dust-model reanalysis to obtain dust climatologies at the regional scale and long-term 

trend analysis. 
 
• Promote, in close collaboration with UNEP and national environmental agencies, 

multidisciplinary studies leading to the establishment of high-resolution maps of dust 
sources and their characteristics and PM-type observations, in order to improve modelling, 
using UNEP communication links with national environmental authorities. Local/national 
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data on land use, soil texture and land cover are ingredients in the model emission 
parameterization. Land/soil information should be at the highest possible resolution, 
preferably finer than 1 km.  

  
 Modelling is a complex issue requiring well-trained, qualified personnel. A thorough training 
plan for modellers of the region, in collaboration with recognized international dust-modelling 
institutions and providers is therefore necessary. 
 
 
B.3.5 User-oriented products and services 
 There are no specific user-oriented products and services on sand- and dust storms in 
West Asia. 
 
 NMSs, environment protection agencies, health institutions, aviation authorities, energy 
departments, marine resources and fishery agencies, wildlife, forestry and agriculture agencies, 
disaster risk and civil protection agencies, research institutions and universities should participate 
in the SDS-WAS Regional Node for West Asia, as contributors and/or as specialized users. 
 
 One of the most important products that NMSs could provide to the general public and 
specific users and professionals in different sectors would be accurate SDS early warnings, 
anticipating their impacts and reducing societal and economic losses. Environment, health, 
transport and civil defence authorities need to be notified of observed or predicted SDS events in a 
timely fashion. A challenging, and probably profitable, orientation of SDS products would be the 
support to emerging activities for which SDS can be critical: solar-power plants (production 
efficiency and maintenance), the electronics industry, airport operations and aviation maintenance, 
high-speed rail operations and farm and livestock management. SDS-WAS will be an essential tool 
to help environmental authorities in formulating future air-quality regulations. The WMO SDS-WAS 
Regional Node for West Asia will provide unique complementary information to climate services 
concerning drought and desertification monitoring. 
 
 End-products should be agreed with potential users and SDS products must be “translated” 
into language that is understandable to the end-user. Thus, a WG specialized in user-oriented SDS 
products and services should also be created within the SDS-WAS Regional Centre for West Asia. 
This WG would ask potential users to state their needs, at the same time explaining the capacities 
and limitations to delivering different SDS products and services. 
 
 
B.3.6 Training and capacity-building 
 Most countries in the region have an interest in both general and specific SDS capacity-
building. The Islamic Republic of Iran and Turkey have notable experience in organizing general 
SDS training courses and workshops. Oman, with the CoE for Training in Satellite Meteorology, 
has valuable experience in organizing international courses on satellite observations and 
applications to SDS monitoring and forecasting. There is, however, a clear gap in capacity-building 
in the areas of in situ observation, ground-based remote-sensing and modelling techniques and 
methodologies. The importance of training in standardized methods and techniques on a regional 
scale is to be emphasized. 
 
 Regional cooperation in capacity-building and training, within the SDS-WAS Regional 
Node, will lower costs and allow all countries to work with common rules and standardized 
procedures, facilitating data exchange and information sharing. Capacity-building within the WMO 
SDS-WAS involves technology transfer with self-sustaining capability and long-term partnership in 
mind. It will be coordinated through various mechanisms, including those well established in WMO 
through its Development and Regional Activities Department.  
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 Depending on available resources, capacity-building and training activities should include: 
 
• Regular scientific exchange through workshops or seminars to discuss recent 

developments in general SDS issues, such as observation, modelling, forecasting and 
users. 

• Specialized capacity-building, including training in specific technical issues such as, for 
example, satellite-data access and analysis, dust storm forecast and simulation model- 
output analysis, targeting user needs through new information products, measuring and 
monitoring air quality through remote-sensing (sunphotometers or lidar) and in situ air-
sampling instruments, etc. 

• Medium-term (several months) stays at specialized centres to learn techniques or 
methodologies regarding observations, modelling and elaboration of user-oriented 
products. 

 
 
B.3.7 Collaboration mechanisms for the SDS-WAS Regional Node for West Asia 
 Unfortunately, there are currently no mechanisms for collaboration in SDS activities in West 
Asia. Each country deals with the issue in an isolated manner and within each country there is little 
or virtually no collaboration between different actors who can contribute to SDS activities such as 
those of NMSs, air-quality authorities, research centres and universities. 
 
 Countries have minimal preparation for monitoring and forecasting activities and managing 
background information on SDS. 
 
 Like other meteorological parameters and variables, dust has no international borders. 
Countries cannot address dust monitoring and forecasting individually. Most of them are dust 
sources and at the same time are impacted by dust transported from neighbouring countries. A 
smooth and rapid exchange of information between countries is therefore essential for an effective 
and useful SDS-WAS. This can only be achieved by implementing an SDS-WAS Regional Node 
for West Asia as proposed by WMO. 
 
 SDS-WAS was established in 2007 as a WMO programme in response to the intention of 
40 WMO Member States to improve capabilities for more reliable SDS forecasts. The SDS-WAS 
mission is to achieve comprehensive, coordinated and sustained observations and modelling 
capabilities in order to improve monitoring and so increase the understanding of dust processes 
and enhance dust prediction. SDS-WAS integrates the research and user communities.  
 
 The WMO SDS-WAS Science and Implementation Plan offers an operational structure for 
dealing with a diverse community underpinned by well-established WMO systems of research, 
observations, numerical weather and climate prediction and service delivery. The diverse 
requirements of SDS research and user communities for observations, forecasts and analyses 
require the development of interfaces through careful assessments. A comprehensive, coordinated 
observing network for the monitoring of SDS and improved modelling capabilities will increase the 
understanding of dust processes and enhance their prediction. The WMO SDS-WAS Science and 
Implementation Plan thus proposes an architecture and information exchange that will secure 
efficient and balanced cooperation and participation of the major components: research, prediction, 
observations and service delivery. It is an activity that cuts across WMO programmes, as well as 
involving a substantive partnership outside the NMSs, particularly in research. In the framework of 
this concept, SDS-WAS is an international network of research, national operational centres and 
users organized through regional nodes, assisted by the SDS-WAS regional centres. It is 
coordinated by the SDS-WAS Steering Committee, supported by the WMO Secretariat, and 
reports to the Commission for Atmospheric Sciences through WWRP and GAW programmes. 
 
 At the regional level of nodes, SDS-WAS is structured as a federation of partners. What the 
term federation implies is an organized structure following minimum global standards and rules of 
practice. A federated approach allows flexibility, growth and evolution, while preserving the 
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autonomy of individual institutions. It allows a variety of participants, such as NMSs, air-quality 
agencies/authorities, universities and research centres and user institutions serving as hosts 
or/and partners, to cooperate and benefit without changes to their own internal structures and 
existing arrangements. The structure is scalable and allows for adaptability to changing research 
and operational environments.  
 
 A regional node is also organized according to federal principles. Activities within each 
node are harmonized by an SDS-WAS RSG, assisted by the WMO Secretariat. Each node has to 
implement the following tasks agreed by a corresponding RSG: 
 
• Provide a web-based portal agreed between regional partners for user access to regional 

research and forecast activities and services.  
• Support efficient observation data-sharing, providing neutral ground for SDS-WAS data 

exchange. 
• Assist partners in implementing agreed research and forecast activities at regional level. 
• Cooperate with existing operational service delivery mechanisms, recognizing that warnings 

related to SDS-WAS are generally the responsibility of the NMSs and that SDS-WAS 
products provide input to them.  

 
• Report on implementation progress to the WWRP Joint Scientific Committee and to the 

SDS-WAS RSG. 
• Support research among partners of the SDS-WAS regional node and help implement 

operational SDS-WAS forecasts at the NMSs. 
• Guide the RSG on implementing agreed research and forecast activities at a regional level. 
• Organize training workshops in the use of SDS-WAS products. 
• Convene symposia, conferences, workshops and other meetings, as necessary, to advance 

research SDS activities.  
• Assist, when necessary, in resource mobilization through trust-fund contributions. 
 
 Partners can contribute to SDS-WAS regional node activities, according to their capabilities. 
Considering that the most important areas of collaboration within the SDS-WAS are observation, 
modelling and prediction, capacity-building and user support, and that these areas can be 
subdivided, in turn, into other more specific topics, partners may propose to take the responsibility 
of leading the coordination of a topic and implement a dedicated website with all the information 
agreed on that topic. Each topical website would be part of the SDS-WAS web portal of the 
regional node. This, in turn, could be mirrored in servers of countries with adequate computational 
resources. A web portal will be established in the regional node as a result of node activities and 
partners’ coordination. Thus, the regional node will not depend on a single institution, and if any 
member fails, another partner could assume its corresponding function. In this way, a robust, 
participatory regional system can be established, which is transparent to all partners. Any member 
of the region may join the regional node at any time. 
  
 To achieve this configuration, it is necessary to create several WGs addressing different 
subjects, which should be integrated by corresponding specialists and experts of the region. They 
will identify activities, and specific partners of the regional node should assume responsibilities and 
obligations. These WGs should emerge from a first meeting of the SDS-WAS RSG. 
 
 
B.3.8 The WMO SDS-WAS Regional Node for West Asia: a collaborative partner of the 
 UNEP Regional Programme to Combat Sand and Dust Storms 
 
 The proposed WMO SDS-WAS Regional Node for West Asia is self-sufficient and builds on 
a model that has already been successfully implemented in other regions. The WMO SDA-WAS 
Regional Node for West Asia will be a fundamental tool for dust storm monitoring and early 
warning, as well as for long-term monitoring of the evolution of dust hotspots at different spatial 
and temporal scales.  
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 SDS originate in dry and desert regions. Many of these areas have been extremely dry for 
hundreds or thousands of years, owing to natural causes. They currently emit atmospheric dust 
and are expected to continue to do so in the future with no remedy in the medium term. These dust 
emissions require monitoring and early warning systems. In other regions, soils have been 
degraded over a few decades, directly by human activities such as mismanagement of water 
resources and land misuse, and indirectly by climate change. This results in new dust sources and 
increasing dust emissions to the atmosphere, which have been intensifying rapidly in recent 
decades, adding to emissions from natural dust sources. In this sense, an SDS-WAS Regional 
Node for West Asia is essential for understanding, monitoring and combating desertification in 
collaboration with the UNEP Regional Programme to Combat Sand and Dust Storms, with the 
participation of the affected countries and support from other UN organizations and agencies and 
other partners. 
 
 The UNEP SDS Programme has the following four objectives: 
 
1. To strengthen cooperation among countries of the Region (and within countries) to address 

the SDS problem through collaborative and innovative solutions, institutions and adequate 
resources. 

2. To enhance scientific and societal knowledge about the causes, sources, impacts and 
dynamics of, and coping with, SDS. 

3. To reduce occurrence and impacts of SDS through the design and implementation of 
innovative and scalable solutions that will at the same time promote investment in the green 
economy, benefiting local communities and livelihoods.    

4. To establish systems of coordinated and state-of-the art monitoring and early warning, 
including the development of specialized regional centres. 

 
 The WMO SDS-WAS Regional Node for West Asia will help to achieve all the objectives, 
but will play a key role in Objectives 1, 2 and 4. 
 
 The UNEP SDS Programme will be built and developed in a logical, four-step approach: 
 
1. Understand and diagnose the problem 
2. Propose and reach consensus on the solutions 
3. Implement the agreed actions 
4. Monitor, learn and scale up 
 
 The WMO SDS-WAS Regional Node for West Asia will help to understand and diagnose 
the problem, using proven scientific techniques and methodologies in the first step of the UNEP 
SDS Programme and will contribute to the fourth step, measuring success of implemented actions, 
and providing knowledge to define and implement carefully tailored strategies for the scaling-up of 
these actions. 
  
 The well-defined collaboration mechanisms of the WMO SDS-WAS regional nodes ensure 
collaboration between groups within a country, collaboration between countries in a region and 
exchange of information and collaboration at the interregional level under the WMO umbrella. The 
fact that the WMO SDS-WAS Regional Node for West Asia is a collaborative partner of the UNEP 
SDS Programme ensures the interconnection and coordination of United Nations Programmes. 

 
 
 

_______ 
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